scholarly journals PdMFS1 Transporter Contributes to Penicilliun digitatum Fungicide Resistance and Fungal Virulence during Citrus Fruit Infection

2019 ◽  
Vol 5 (4) ◽  
pp. 100 ◽  
Author(s):  
Marta de Ramón-Carbonell ◽  
Mario López-Pérez ◽  
Luis González-Candelas ◽  
Paloma Sánchez-Torres

A new Penicillium digitatum major facilitator superfamily (MFS) transporter (PdMFS1) was identified and functionally characterized in order to shed more light on the mechanisms underlying fungicide resistance. PdMFS1 can play an important role in the intensification of resistance to fungicides normally used in P. digitatum postharvest treatments. In the PdMFS1 disrupted mutants, a slight effect in response to chemical fungicides was observed, but fungicide sensitivity was highly affected in the overexpression mutants which became resistant to wide range of chemical fungicides. Moreover, P. digitatum knock-out mutants exhibited a lower rate of fungal virulence when infected oranges were stored at 20 °C. Disease symptoms were higher in the PdMFS1 overexpression mutants coming from the low-virulent P. digitatum parental strain. In addition, the gene expression analysis showed an induction of PdMFS1 transcription in all overexpression mutants regardless from which progenitor came from, and four-time intensification of the parental wild type strain during citrus infection reinforcing PdMFS1 role in fungal virulence. The P. digitatum MFS transporter PdMFS1 contributes not only to the acquisition of wide range of fungicide resistance but also in fungal virulence during citrus infection.

2019 ◽  
Vol 7 (9) ◽  
pp. 285 ◽  
Author(s):  
Pasqua ◽  
Grossi ◽  
Zennaro ◽  
Fanelli ◽  
Micheli ◽  
...  

Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and targeted host cells, with emphasis on their role in bacterial virulence, in the colonization of plant and animal host cells and in biofilm formation. We will also address the complexity of these interactions in the light of the underlying regulatory networks required for the effective activation of efflux pump genes.


2007 ◽  
Vol 18 (3) ◽  
pp. 965-975 ◽  
Author(s):  
Francisco J. Alvarez ◽  
James B. Konopka

The sugar N-acetylglucosamine (GlcNAc) plays an important role in nutrient sensing and cellular regulation in a wide range of organisms from bacteria to humans. In the fungal pathogen Candida albicans, GlcNAc induces a morphological transition from budding to hyphal growth. Proteomic comparison of plasma membrane proteins from buds and from hyphae induced by GlcNAc identified a novel hyphal protein (Ngt1) with similarity to the major facilitator superfamily of transporters. An Ngt1-GFP fusion was detected in the plasma membrane after induction with GlcNAc, but not other related sugars. Ngt1-GFP was also induced by macrophage phagocytosis, suggesting a role for the GlcNAc response in signaling entry into phagolysosomes. NGT1 is needed for efficient GlcNAc uptake and for the ability to induce hyphae at low GlcNAc concentrations. High concentrations of GlcNAc could bypass the need for NGT1 to induce hyphae, indicating that elevated intracellular levels of GlcNAc induce hyphal formation. Expression of NGT1 in Saccharomyces cerevisiae promoted GlcNAc uptake, indicating that Ngt1 acts directly as a GlcNAc transporter. Transport mediated by Ngt1 was specific, as other sugars could not compete for the uptake of GlcNAc. Thus, Ngt1 represents the first eukaryotic GlcNAc transporter to be discovered. The presence of NGT1 homologues in the genome sequences of a wide range of eukaryotes from yeast to mammals suggests that they may also function in the cellular processes regulated by GlcNAc, including those that underlie important diseases such as cancer and diabetes.


2016 ◽  
Vol 44 (3) ◽  
pp. 760-765 ◽  
Author(s):  
Gavin H. Thomas

The sialic acids are a family of 9-carbon sugar acids found predominantly on the cell-surface glycans of humans and other animals within the Deuterostomes and are also used in the biology of a wide range of bacteria that often live in association with these animals. For many bacteria sialic acids are simply a convenient source of food, whereas for some pathogens they are also used in immune evasion strategies. Many bacteria that use sialic acids derive them from the environment and so are dependent on sialic acid uptake. In this mini-review I will describe the discovery and characterization of bacterial sialic acids transporters, revealing that they have evolved multiple times across multiple diverse families of transporters, including the ATP-binding cassette (ABC), tripartite ATP-independent periplasmic (TRAP), major facilitator superfamily (MFS) and sodium solute symporter (SSS) transporter families. In addition there is evidence for protein-mediated transport of sialic acids across the outer membrane of Gram negative bacteria, which can be coupled to periplasmic processing of different sialic acids to the most common form, β-D-N-acetylneuraminic acid (Neu5Ac) that is most frequently taken up into the cell.


2021 ◽  
Vol 7 (9) ◽  
pp. 783
Author(s):  
Paloma Sánchez-Torres

The necrotrophic fungus Penicillium digitatum (Pd) is responsible for the green mold disease that occurs during postharvest of citrus and causes enormous economic losses around the world. Fungicides remain the main method used to control postharvest green mold in citrus fruit storage despite numerous occurrences of resistance to them. Hence, it is necessary to find new and more effective strategies to control this type of disease. This involves delving into the molecular mechanisms underlying the appearance of resistance to fungicides during the plant–pathogen interaction. Although mechanisms involved in resistance to fungicides have been studied for many years, there have now been great advances in the molecular aspects that drive fungicide resistance, which facilitates the design of new means to control green mold. A wide review allows the mechanisms underlying fungicide resistance in Pd to be unveiled, taking into account not only the chemical nature of the compounds and their target of action but also the general mechanism that could contribute to resistance to others compounds to generate what we call multidrug resistance (MDR) phenotypes. In this context, fungal transporters seem to play a relevant role, and their mode of action may be controlled along with other processes of interest, such as oxidative stress and fungal pathogenicity. Thus, the mechanisms for acquisition of resistance to fungicides seem to be part of a complex framework involving aspects of response to stress and processes of fungal virulence.


2019 ◽  
Vol 8 (16) ◽  
Author(s):  
Qiuying Cheng ◽  
Gary Xie ◽  
Hajnalka Daligault ◽  
Karen Davenport ◽  
Cheryl Gleasner ◽  
...  

We report here the genome sequence of a Staphylococcus xylosus clinical isolate, strain SMA0341-04 (UGA5), which contains one chromosome and at least one plasmid. Notably, strain SMA0341-04 (UGA5) contains the tetracycline efflux major facilitator superfamily (MFS) transporter (tetK) gene.


2021 ◽  
Vol 43 (3) ◽  
pp. 1548-1557
Author(s):  
Na Liu ◽  
Qiannan Wang ◽  
Chaozu He ◽  
Bang An

Colletotrichum gloeosporioides is the main causal agent of anthracnose in various plant species. Determining the molecular mechanisms underlying the pathogenicity and fungicide resistance of C. gloeosporioides could help build new strategies for disease control. The major facilitator superfamily (MFS) has multiple roles in the transport of a diverse range of substrates. In the present study, an MFS protein CgMFS1 was characterized in C. gloeosporioides. This protein contains seven transmembrane domains, and its predicted 3D structure is highly similar to the reported hexose transporters. To investigate the biological functions of CgMFS1, the gene knock-out mutant ΔCgMFS1 was constructed. A colony growth assay showed that the mutant was remarkably decreased in vegetative growth in minimal medium supplemented with monosaccharides and oligosaccharides as the sole carbon sources, whereas it showed a similar growth rate and colony morphology as wild types when using soluble starch as the carbon source. A stress assay revealed that CgMFS1 is involved in oxidative stress but not in the fungicide resistance of C. gloeosporioides. Furthermore, its pathogenicity was significantly impaired in the mutant, although its appressorium formation was not affected. Our results demonstrate that CgMFS1 is required for sugar transport, resistance to oxidative stress, and the pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis.


2016 ◽  
Vol 72 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Atin Sharma ◽  
Rajnikant Sharma ◽  
Tapas Bhattacharyya ◽  
Timsy Bhando ◽  
Ranjana Pathania

2019 ◽  
Vol 8 (15) ◽  
Author(s):  
Gary Xie ◽  
Qiuying Cheng ◽  
Hajnalka Daligault ◽  
Karen Davenport ◽  
Cheryl Gleasner ◽  
...  

We report the complete draft genome sequences of two Staphylococcus warneri clinical isolates, strains SMA0023-04 (UGA3) and SMA0670-05 (UGA28), each of which contains one chromosome and at least one plasmid. Isolate SMA0023-04 (UGA3) contains tetracycline efflux major facilitator superfamily (MFS) transporter (tetK), macrolide resistance (msrC and mphC), and beta-lactamase (blaZ) genes on its plasmids.


2010 ◽  
Vol 192 (6) ◽  
pp. 1487-1497 ◽  
Author(s):  
Alice Boulanger ◽  
Guillaume Déjean ◽  
Martine Lautier ◽  
Marie Glories ◽  
Claudine Zischek ◽  
...  

ABSTRACT Xanthomonas campestris pv. campestris, the causal agent of black rot disease of brassicas, is known for its ability to catabolize a wide range of plant compounds. This ability is correlated with the presence of specific carbohydrate utilization loci containing TonB-dependent transporters (CUT loci) devoted to scavenging specific carbohydrates. In this study, we demonstrate that there is an X. campestris pv. campestris CUT system involved in the import and catabolism of N-acetylglucosamine (GlcNAc). Expression of genes belonging to this GlcNAc CUT system is under the control of GlcNAc via the LacI family NagR and GntR family NagQ regulators. Analysis of the NagR and NagQ regulons confirmed that GlcNAc utilization involves NagA and NagB-II enzymes responsible for the conversion of GlcNAc-6-phosphate to fructose-6-phosphate. Mutants with mutations in the corresponding genes are sensitive to GlcNAc, as previously reported for Escherichia coli. This GlcNAc sensitivity and analysis of the NagQ and NagR regulons were used to dissect the X. campestris pv. campestris GlcNAc utilization pathway. This analysis revealed specific features, including the fact that uptake of GlcNAc through the inner membrane occurs via a major facilitator superfamily transporter and the fact that this amino sugar is phosphorylated by two proteins belonging to the glucokinase family, NagK-IIA and NagK-IIB. However, NagK-IIA seems to play a more important role in GlcNAc utilization than NagK-IIB under our experimental conditions. The X. campestris pv. campestris GlcNAc NagR regulon includes four genes encoding TonB-dependent active transporters (TBDTs). However, the results of transport experiments suggest that GlcNAc passively diffuses through the bacterial envelope, an observation that calls into question whether GlcNAc is a natural substrate for these TBDTs and consequently is the source of GlcNAc for this nonchitinolytic plant-associated bacterium.


Author(s):  
Elisa Rampacci ◽  
Maria Luisa Marenzoni ◽  
Rolando Cannalire ◽  
Donatella Pietrella ◽  
Stefano Sabatini ◽  
...  

Abstract Background This study introduces a newly created strain (Rhodococcus equiEtBr25) by exposing R. equi ATCC 33701 to ethidium bromide (EtBr), a substrate for MDR transporters. Such an approach allowed us to investigate the resulting phenotype and genetic mechanisms underlying the efflux-mediated resistance in R. equi. Methods R. equi ATCC 33701 was stimulated with increasing concentrations of EtBr. The antimicrobial susceptibility of the parental strain and R. equiEtBr25 was investigated in the presence/absence of efflux pump inhibitors (EPIs). EtBr efflux was evaluated by EtBr-agar method and flow cytometry. The presence of efflux pump genes was determined by conventional PCR before to quantify the expression of 30 genes coding for membrane transporters by qPCR. The presence of erm(46) and mutations in 23S rRNA, and gyrA/gyrB was assessed by PCR and DNA sequencing to exclude the occurrence of resistance mechanisms other than efflux. Results R. equi EtBr25 showed an increased EtBr efflux. Against this strain, the activity of EtBr, azithromycin and ciprofloxacin was more affected than that of rifampicin and azithromycin/rifampicin combinations. Resistances were reversed by combining the antimicrobials with EPIs. Gene expression analysis detected a marked up-regulation of REQ_RS13460 encoding for a Major Facilitator Superfamily (MFS) transporter. G→A transition occurred in the transcriptional repressor tetR/acrR adjacent to REQ_RS13460. Conclusions Exposure of R. equi to EtBr unmasked an efflux-mediated defence against azithromycin and ciprofloxacin, which seemingly correlates with the overexpression of a specific MFS transporter. This genotype may mirror an insidious low-level resistance of clinically important isolates that could be countered by EPI-based therapies.


Sign in / Sign up

Export Citation Format

Share Document