scholarly journals Material-Dependent Shear Capacity of Threaded Rods

CivilEng ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 351-367
Author(s):  
Nikolai Sklarov ◽  
Catherina Thiele

Currently, the determination of the shear capacity VRk,s0 of post installed adhesive anchors is already included in the current standardization and approval documents. Considering that EAD 330499-00-0601 allows for determining the shear resistance of a fastener only based on the characteristic steel ultimate tensile strength fuk determined from the material tensile tests, and without considering the actual ductility of the material used, this leads to a severe underestimation of the actual steel shear resistance. In order to efficiently determine the shear strength by calculation based on material characteristics, tensile and shear tests were carried out on metallic threaded rods and rebars to show their correlation with the material properties. A new correlation between tensile and shear strength is presented, which is based on the plasticity module Epl and allows a good prognosis of the shear strength.

2010 ◽  
Vol 44 (21) ◽  
pp. 2487-2507 ◽  
Author(s):  
G. Vargas ◽  
F. Mujika

The aim of this work is to compare from an experimental point of view the determination of in-plane shear strength of unidirectional composite materials by means of two off-axis tests: three-point flexure and tensile. In the case of the off-axis three-point flexure test, the condition of small displacements and the condition of lift-off between the specimen and the fixture supports have been taken into account. Some considerations regarding stress and displacement fields are presented. The in-plane shear characterization has been performed on a carbon fiber reinforced unidirectional laminate with several fiber orientation angles: 10°, 20°, 30°, and 45°. Test conditions for both off-axis experimental methods, in order to ensure their applicability, are presented. Off-axis flexure test is considered more suitable than off-axis tensile test for the determination of in-plane shear strength.


2015 ◽  
Vol 10 (2) ◽  
pp. 103-112
Author(s):  
Sinan Korjenic ◽  
Bernhard Nowak ◽  
Philipp Löffler ◽  
Anna Vašková

Abstract This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it) and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.


Author(s):  
Aysha M Zaneeb ◽  
Rupen Goswami ◽  
C V R Murty

An analytical method is presented to estimate lateral shear strength (and identify likely mode and location of failure) in reinforced concrete (RC) cantilever columns of rectangular cross-section under combined axial force, shear force and bending moment. Change in shear capacity of concrete with flexural demand at a section is captured explicitly and the shear resistance offered by concrete estimated; this is combined with shear resistance offered by transverse and longitudinal reinforcement bars to estimate the overall shear capacity of RC columns. Shear–moment (V-M) interaction capacity diagram of an RC column, viewed alongside the demand diagram, identifies the lateral shear strength and failure mode. These analytical estimates compare well with test data of 107 RC columns published in literature; the test data corresponds to different axial loads, transverse reinforcement ratios, longitudinal reinforcement ratios, shear span to depth ratios, and loading conditions. Also, the analytical estimates are compared with those obtained using other analytical methods reported in literature; in all cases, the proposed method gives reasonable accuracy when estimating shear capacity of RC columns.  In addition, the method provides insights into the shear resistance mechanism in RC columns under the combined action of P-V-M, and it is simple to use.


2012 ◽  
Vol 204-208 ◽  
pp. 3287-3293
Author(s):  
Xin Xue ◽  
Hiroshi Seki ◽  
Yu Song

There have been few reports on shear behavior of reinforced concrete (RC) beams with corroded stirrups, and the influence of stirrup corrosion has yet to be identified. Given this background, experience was carried out to investigate the shear behavior of RC beams containing corroded stirrups. Investigation results indicate that if the percentage local maximum mass loss is below 35%, there is little influence on the load-carrying mechanism. The concrete shear resistance seems to change little and the shear capacity can be calculated by just taking into consideration the reduction in stirrup shear resistance. It is also found that the anchorage conditions of the stirrups have a predominant influence on the shears of RC beams.


1988 ◽  
Vol 25 (3) ◽  
pp. 500-510 ◽  
Author(s):  
J. K. M. Gan ◽  
D. G. Fredlund ◽  
H. Rahardjo

Multistage direct shear tests have been performed on saturated and unsaturated specimens of a compacted glacial till. A conventional direct shear apparatus was modified in order to use the axis-translation technique for direct shear tests on unsaturated soils. The soil can be subjected to a wide range of matric suctions. The testing procedure and some typical results are presented. Nonlinearity in the failure envelope with respect to matric suction was observed. Suggestions are made as to how best to handle the nonlinearity from a practical engineering standpoint. Key words: shear strength, unsaturated soils, negative pore-water pressures, soil suction, direct shear.


2021 ◽  
Vol 5 (2) ◽  
pp. 125
Author(s):  
Mohammad Afrazi ◽  
Mahmoud Yazdani

Many geotechnical problems require the determination of soil engineering properties such as shear strength. Therefore, the determination of the reliable values for this parameter is essential. For this purpose, the direct shear test, as one of the oldest tests to examine the shear strength of soils, is the most common way in laboratories to determine the shear parameters of soil. There are far too many variables that influence the results of a direct shear test. In this paper, a series of 10 × 10 cm direct shear tests were carried out on four different poorly graded sands with different particle size distributions to determine their shear behaviors. Four different poorly graded sands with a different median diameter or medium value of particle size distribution (D50) (0.2, 0.53, 1.3, and 2.3 mm) has been selected, and about 40 direct shear tests were conducted. It was concluded that a soil’s friction angle is affected by coarse-grained material. Accordingly, sandy soils with bigger particle sizes record a higher friction angle than soils containing small particles. The investigations also showed that sand with bigger particle sizes has a higher dilation angle. In addition, a non-linear regression analysis was performed to establish the exact relationship between the friction angle of the soil and the characteristics of the soil particles. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


2021 ◽  
pp. 136943322110463
Author(s):  
Fang Yuan ◽  
Wangren Wei ◽  
Ren Hu

Engineered cementitious composite (ECC) is a type of high-performance fibre-reinforced cementitious composite with good ductility and excellent crack control ability. It has attracted increasing attention as a structural repair material in severely corrosive environments. However, the strength improvement is limited when ECC is used alone for shear strengthening of existing reinforced concrete (RC) members, although its shear capacity is much higher than that of other brittle cementitious materials such as cement mortar. This study proposes a novel shear strengthening method for RC beams with both high load-carrying capacity and good durability through the combination of high-strength steel wire and an ECC layer. The shear behaviours of the beams were tested under static loading. The test results showed that the shear strength and the ultimate displacement were significantly improved through shear strengthening. A large number of fine cracks appeared on the ECC layer before the failure of the beams. The load-carrying capacity was reduced by pre-damage owing to the important role of the shear resistance of the concrete with respect to the total shear capacity. The shear strength of the strengthened beams cannot be accurately predicted by the current design code owing to the ignorance of the shear resistance of ECC.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
ZiFan Sui ◽  
Wen Yi ◽  
YunGang Lu ◽  
Liang Deng

The shear strength of the soil refers to the ultimate strength of the soil against shear failure, which is one of the important indicators used to measure slope stability. This paper presents a simulation of direct shear tests on root-soil composites with different root embedding angles under different stress conditions. By comparing and analyzing the simulation results of ABAQUS software and the laboratory test results, the enhancement effect of plant roots on soil shear strength was explored. Conclusions can be drawn as follows: the excellent agreement between numerical models and laboratory shear tests suggested that the developed model can quickly and conveniently predict the shear strength of the root-soil composites. The shear strength was related to the rooting arrangement. For a single root system, when the inclination angle of the root was about 64° to the shear direction, the shear resistance of soil was much improved, while the root reinforcement had less effect when the inclination angle was greater than 90°. In the case of multiple roots, the hybrid rooting method can more effectively improve the shear resistance of the root-soil composite. Therefore, in the practical application of using the root to strengthen the soil, the angle of a single root and arrangement of multiple roots should be comprehensively considered.


Sign in / Sign up

Export Citation Format

Share Document