scholarly journals Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon

2021 ◽  
Vol 3 (4) ◽  
pp. 881-909
Author(s):  
Damien Guilbert ◽  
Gianpaolo Vitale

Hydrogen is recognized as a promising and attractive energy carrier to decarbonize the sectors responsible for global warming, such as electricity production, industry, and transportation. However, although hydrogen releases only water as a result of its reaction with oxygen through a fuel cell, the hydrogen production pathway is currently a challenging issue since hydrogen is produced mainly from thermochemical processes (natural gas reforming, coal gasification). On the other hand, hydrogen production through water electrolysis has attracted a lot of attention as a means to reduce greenhouse gas emissions by using low-carbon sources such as renewable energy (solar, wind, hydro) and nuclear energy. In this context, by providing an environmentally-friendly fuel instead of the currently-used fuels (unleaded petrol, gasoline, kerosene), hydrogen can be used in various applications such as transportation (aircraft, boat, vehicle, and train), energy storage, industry, medicine, and power-to-gas. This article aims to provide an overview of the main hydrogen applications (including present and future) while examining funding and barriers to building a prosperous future for the nation by addressing all the critical challenges met in all energy sectors.

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Bartosz Hrycak ◽  
Dariusz Czylkowski ◽  
Robert Miotk ◽  
Miroslaw Dors ◽  
Mariusz Jasinski ◽  
...  

AbstractHydrogen seems to be one of the most promising alternative energy sources. It is a renewable fuel as it could be produced from e.g. waste or bio-ethanol. Furthermore hydrogen is compatible with fuel cells and is environmentally clean. In contrast to conventional methods of hydrogen production such as water electrolysis or coal gasification we propose a method based on atmospheric pressure microwave plasma. In this paper we present results of the experimental investigations of hydrogen production from ethanol in the atmospheric pressure plasma generated in waveguide-supplied cylindrical type nozzleless microwave (2.45 GHz) plasma source (MPS). Nitrogen was used as a working gas. All experimental tests were performed with the nitrogen flow rate Q ranged from 1500 to 3900 NL h


2017 ◽  
Vol 38 (4) ◽  
pp. 65-87 ◽  
Author(s):  
Janusz Kotowicz ◽  
Łukasz Bartela ◽  
Klaudia Dubiel-Jurgaś

Abstract Paper presents the concept of energy storage system based on power-to-gas-to-power (P2G2P) technology. The system consists of a gas turbine co-firing hydrogen, which is supplied from a distributed electrolysis installations, powered by the wind farms located a short distance from the potential construction site of the gas turbine. In the paper the location of this type of investment was selected. As part of the analyses, the area of wind farms covered by the storage system and the share of the electricity production which is subjected storage has been changed. The dependence of the changed quantities on the potential of the hydrogen production and the operating time of the gas turbine was analyzed. Additionally, preliminary economic analyses of the proposed energy storage system were carried out.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
William L. Becker ◽  
Michael Penev ◽  
Robert J. Braun

Power-to-gas to energy systems are of increasing interest for low carbon fuels production and as a low-cost grid-balancing solution for renewables penetration. However, such gas generation systems are typically focused on hydrogen production, which has compatibility issues with the existing natural gas pipeline infrastructures. This study presents a power-to-synthetic natural gas (SNG) plant design and a techno-economic analysis of its performance for producing SNG by reacting renewably generated hydrogen from low-temperature electrolysis with captured carbon dioxide. The study presents a “bulk” methanation process that is unique due to the high concentration of carbon oxides and hydrogen. Carbon dioxide, as the only carbon feedstock, has much different reaction characteristics than carbon monoxide. Thermodynamic and kinetic considerations of the methanation reaction are explored to design a system of multistaged reactors for the conversion of hydrogen and carbon dioxide to SNG. Heat recuperation from the methanation reaction is accomplished using organic Rankine cycle (ORC) units to generate electricity. The product SNG has a Wobbe index of 47.5 MJ/m3 and the overall plant efficiency (H2/CO2 to SNG) is shown to be 78.1% LHV (83.2% HHV). The nominal production cost for SNG is estimated at 132 $/MWh (38.8 $/MMBTU) with 3 $/kg hydrogen and a 65% capacity factor. At U.S. DOE target hydrogen production costs (2.2 $/kg), SNG cost is estimated to be as low as 97.6 $/MWh (28.6 $/MMBtu or 1.46 $/kgSNG).


2021 ◽  
Vol 2021 (1) ◽  
pp. 45-51
Author(s):  
N.P. Ivanenko ◽  
◽  
P.V. Tarasenko ◽  

To ensure the balance reliability of regimes of UES functioning, it was necessary to apply restrictions on generation from renewable energy sources (RES). In this regard, a number of amendments was made in 2020 to the Law of Ukraine "On the Electricity Market" dated April 13, 2017 No. 2019-VIII, which provide for reduction of the rates of the "green" tariff for renewable energy projects. CJSC NEC "Ukrenergo" predicts limitation of electricity production from renewable sources against the background of their growing capacity and falling consumption – up to 1 billion kW∙h. The total volume of electricity production from renewable energy sources in 2019 was about 4.5 billion kW∙h. One of the most efficient ways to use excessive electricity is producing hydrogen. Hydrogen has been successfully used as a raw material for many years. The total estimated value of the hydrogen feedstock market is $ 115 billion, and it is expected only to grow, reaching $ 155 billion by 2022. Hydrogen is widely used at present in various industries and sectors. It should be noted separately that the use of hydrogen instead of natural gas does not lead to increasing greenhouse gas emissions and favors the decarbonization of economy. In addition, the by-product of electrolysis is purified oxygen, which is currently relevant. The cost of hydrogen generated with the use of renewable electricity is typically $ 2.5–6.6 / kg of hydrogen. The most well-known technological options for producing hydrogen from RES are water electrolysis and steam reforming of biomethane / biogas with or without carbon capture and use / storage. The purpose of this paper was to estimate the weighted average cost of hydrogen in Ukraine at the expense of RES electricity, in particular, produced by a wind power plant with using water electrolysis. We developed an algorithm for calculating the weighted average cost of hydrogen production using wind power plants for the conditions of Ukraine, taking into account the determination of installed capacities of the battery, electrolyzer, and distiller. According to the calculation results, the weighted average cost of hydrogen production was about US $ 5.1 / kg of hydrogen. Keywords: hydrogen production, renewable energy sources, wind farm, weighted average cost. mathematical model, storage, electrolyzer


2020 ◽  
Vol 3 (2) ◽  
pp. p49
Author(s):  
Rafiq Mulla ◽  
Charles W. Dunnill

Hydrogen, a zero-emission fuel and the universal energy vector, can be easily produced from many different energy sources. It is a storable, transportable product that can be used on demand to overcome supply and demand imbalances. As of today, most of the hydrogen produced comes from natural gas; the production process itself is in fact not so pollution free. As the world is looking for a low carbon future, researchers have therefore been looking for more sustainable, environmentally friendly pathways of hydrogen production by using renewable energy sources such as solar and wind. Among the different methods, water electrolysis is a conventional and promising method of hydrogen production if renewable energy sources are to be employed in the process. Lots of progress has been made over the past few years in extending the use of hydrogen in different sectors. This perspective article briefly covers the recent developments in the hydrogen fuel-based projects and technologies and provides a description of the advantages of employing renewable energy sources for sustainable hydrogen production.


Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Mahmoud Hefny ◽  
Amer Al-Hinai ◽  
...  

AbstractDihydrogen (H2), commonly named ‘hydrogen’, is increasingly recognised as a clean and reliable energy vector for decarbonisation and defossilisation by various sectors. The global hydrogen demand is projected to increase from 70 million tonnes in 2019 to 120 million tonnes by 2024. Hydrogen development should also meet the seventh goal of ‘affordable and clean energy’ of the United Nations. Here we review hydrogen production and life cycle analysis, hydrogen geological storage and hydrogen utilisation. Hydrogen is produced by water electrolysis, steam methane reforming, methane pyrolysis and coal gasification. We compare the environmental impact of hydrogen production routes by life cycle analysis. Hydrogen is used in power systems, transportation, hydrocarbon and ammonia production, and metallugical industries. Overall, combining electrolysis-generated hydrogen with hydrogen storage in underground porous media such as geological reservoirs and salt caverns is well suited for shifting excess off-peak energy to meet dispatchable on-peak demand.


2021 ◽  
Vol 1034 (1) ◽  
pp. 012075
Author(s):  
Purnami ◽  
ING. Wardana ◽  
Sudjito ◽  
Denny Widhiyanuriyawan ◽  
Nurkholis Hamidi

Adsorption ◽  
2021 ◽  
Author(s):  
Anne Streb ◽  
Marco Mazzotti

Abstract Hydrogen as clean energy carrier is expected to play a key role in future low-carbon energy systems. In this paper, we demonstrate a new technology for coupling fossil-fuel based hydrogen production with carbon capture and storage (CCS): the integration of CO2 capture and H2 purification in a single vacuum pressure swing adsorption (VPSA) cycle. An eight step VPSA cycle is tested in a two-column lab-pilot for a ternary CO2–H2–CH4 stream representative of shifted steam methane reformer (SMR) syngas, while using commercial zeolite 13X as adsorbent. The cycle can co-purify CO2 and H2, thus reaching H2 purities up to 99.96%, CO2 purities up to 98.9%, CO2 recoveries up to 94.3% and H2 recoveries up to 81%. The key decision variables for adjusting the separation performance to reach the required targets are the heavy purge (HP) duration, the feed duration, the evacuation pressure and the flow rate of the light purge (LP). In contrast to that, the separation performance is rather insensitive towards small changes in feed composition and in HP inlet composition. Comparing the experimental results with simulation results shows that the model for describing multi-component adsorption is critical in determining the predictive capabilities of the column model. Here, the real adsorbed solution theory (RAST) is necessary to describe all experiments well, whereas neither extended isotherms nor the ideal adsorbed solution theory (IAST) can reproduce all effects observed experimentally.


Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121600
Author(s):  
Cong Chen ◽  
Jianzhong Liu ◽  
Hongli Wu ◽  
Jianbin Wang ◽  
Jun Cheng

Sign in / Sign up

Export Citation Format

Share Document