scholarly journals Silk Fibroin-Based Hybrid Nanostructured Coatings for Titanium Implantable Surfaces Modification

Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 518
Author(s):  
Simona Popescu ◽  
Maria-Elena Zarif ◽  
Cristina Dumitriu ◽  
Camelia Ungureanu ◽  
Cristian Pirvu

This study proposes the development of new architectures that combine nanostructured titanium surface and biodegradable polymers as a promising approach to achieve a better performance after bioactive agent incorporation. The silk fibroin protein that was extracted from silkworm Bombyx mori cocoons is important due to the remarkable characteristics, such as biocompatibility, good mechanical properties, adjustable degradation and drug stabilizing capabilities. The titanium substrate was firstly nanostructurated with TiO2 nanotubes and then coated with silk fibroin using electrospinning and electrochemical deposition. The deposited silk film ability to become a bioactive implant coating with antibacterial properties after the encapsulation of the active agents such as CeO2 was investigated. Important features of the new implant coating were analysed: surface properties, electrochemical stability in physiological simulated electrolytes, and antibacterial action against Escherichia coli. The obtained results indicate that silk fibroin bioactive layers are a potential candidate for regenerative medicine.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianglin Ouyang ◽  
Haochao Huang ◽  
Xianshuai Chen ◽  
Jianyu Chen

Bacterial infection is one of the main reasons for the clinical failure of oral titanium restorations. In this study, biodegradable polymer/TiO2 nanotube nanoarray capsules were constructed on a titanium substrate surface to locally deliver drugs for long-lasting antibacterial properties. Anodization was applied to prepreparation TiO2 nanotube array film on titanium substrate, and then, the upward opening TiO2 nanotubes were sealed with biodegradable polymer (chitosan and polyethylene glycol) through electrochemical deposition. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to analyze the characterization of this system. The drug release characteristics and the antibacterial activity demonstrated that the polymer coating significantly reduced burst release and enhanced lasting antibacterial properties. The nanoarray capsules still preserved integrity with a little degradation after 2 days. The strategy described herein provides a versatile route for designing targeted drug delivery systems in orthopaedical and other biomedical fields.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2659
Author(s):  
Aditi Pandey ◽  
Tzu-Sen Yang ◽  
Ta-I Yang ◽  
Wendimi Fatimata Belem ◽  
Nai-Chia Teng ◽  
...  

The current work focuses on the development of a novel electrospun silk fibroin (SF) nonwoven mat as a GTR membrane with antibacterial, biomineralization and biocompatible properties. The γ-poly glutamic acid (γ-PGA)-capped nano silver fluoride (NSF) and silver diamine fluoride (SDF) were first synthesized, which were dip-coated onto electrospun silk fibroin mats (NSF-SF and SDF-SF). UV-Vis spectroscopy and TEM depicted the formation of silver nanoparticles. NSF-SF and SDF-SF demonstrated antibacterial properties (against Porphyromonas gingivalis) with 3.1 and 6.7 folds higher relative to SF, respectively. Post-mineralization in simulated body fluid, the NSF-SF effectively promoted apatite precipitation (Ca/P ~1.67), while the SDF-SF depicted deposition of silver nanoparticles, assessed by SEM-EDS. According to the FTIR-ATR deconvolution analysis, NSF-SF portrayed ~75% estimated hydroxyapatite crystallinity index (CI), whereas pure SF and SDF-SF demonstrated ~60%. The biocompatibility of NSF-SF was ~82% when compared to the control, while SDF-coated samples revealed in vitro cytotoxicity, further needing in vivo studies for a definite conclusion. Furthermore, the NSF-SF revealed the highest tensile strength of 0.32 N/mm and 1.76% elongation at break. Therefore, it is substantiated that the novel bioactive and antibacterial NSF-SF membranes can serve as a potential candidate, shedding light on further in-depth analysis for GTR applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Delizhaer Reheman ◽  
Jing Zhao ◽  
Shan Guan ◽  
Guan-Cheng Xu ◽  
Yi-Jie Li ◽  
...  

Abstract Pyrazolone complexes have strong anti-tumor and antibacterial properties, but the anti-tumor mechanism of pyrazolone-based copper complexes has not been fully understood. In this study, the possible mechanism and the inhibitory effect of a novel pyrazolone-based derivative compound [Cu(PMPP-SAL)(EtOH)] on human cervical cancer cells (HeLa cells) was investigated. [Cu(PMPP-SAL)(EtOH)] effectively inhibited proliferation of HeLa cells in vitro with an IC50 value of 2.082 after treatment for 72 h. Cell cycle analysis showed apoptosis was induced by blocking the cell cycle in the S phase. [Cu(PMPP-SAL)(EtOH)] promoted the loss of mitochondrial membrane potential, release of cytochrome c, PARP cleavage, and activation of caspase-3/9 in HeLa cells. Additionally, [Cu(PMPP-SAL)(EtOH)] inhibited the PI3K/AKT pathway and activated the P38/MAPK, and JNK/MAPK pathways. [Cu(PMPP-SAL)(EtOH)] also inhibited the phosphorylation of Iκ-Bα in the NF-κB pathway activated by TNF-α, thus restricting the proliferation of HeLa cells which were activated by TNF-α. In conclusion, [Cu(PMPP-SAL)(EtOH)] inhibited the growth of HeLa cells and induced apoptosis possibly via the caspase-dependent mitochondria-mediated pathway. These results suggest that [Cu(PMPP-SAL)(EtOH)] can be a potential candidate for the treatment of cervical cancer.


Author(s):  
Oguz Bayraktar ◽  
Ali Bora Balta ◽  
Guldemet Basal Bayraktar

The objective of this study was to investigate the adsorption/desorption behavior of oleuropein on different types of silk fibroin matrices including silk fibroin microfibers (MF), regenerated silk fibroin (RSF), and silk fibroin nanofibers (NF). Nanofibers with an average diameter of ranging between 24 and 326 nm were successfully prepared using the electrospinning technique. The effects of the silk fibroin concentration, the voltage applied and the distance between needle tip and collector plate on the morphology of the NF were investigated. The adsorption capacities of MF, RSF and NF were determined as 104.92, 163.07 and 228.34 mg oleuropein per gram of material, respectively. The percentage of initially adsorbed oleuropein that was desorbed was 86.08, 91.29 and 96.67% for MF, RSF and NF, respectively.NF and RSF discs loaded with oleuropein were subjected to disc diffusion assays to determine their antibacterial activity against test microorganisms Staphylococcus epidermidis (Gram +) and Escherichia coli (Gram – ). The results showed that both biomaterials possessed antibacterial properties after loading with oleuropein. Wound scratch assays using oleuropein released from NF revealed an enhancement of cell migration, indicating a wound healing property of the material.In conclusion, the NF can be utilized as a biofunctional polymeric material with better performance for the adsorption and desorption of oleuropein compared with MF and RSF.


2020 ◽  
Vol 21 (18) ◽  
pp. 6704
Author(s):  
Alexander Kopp ◽  
Laura Schunck ◽  
Martin Gosau ◽  
Ralf Smeets ◽  
Simon Burg ◽  
...  

In this study, we describe the manufacturing and characterization of silk fibroin membranes derived from the silkworm Bombyx mori. To date, the dissolution process used in this study has only been researched to a limited extent, although it entails various potential advantages, such as reduced expenses and the absence of toxic chemicals in comparison to other conventional techniques. Therefore, the aim of this study was to determine the influence of different fibroin concentrations on the process output and resulting membrane properties. Casted membranes were thus characterized with regard to their mechanical, structural and optical assets via tensile testing, SEM, light microscopy and spectrophotometry. Cytotoxicity was evaluated using BrdU, XTT, and LDH assays, followed by live–dead staining. The formic acid (FA) dissolution method was proven to be suitable for the manufacturing of transparent and mechanically stable membranes. The fibroin concentration affects both thickness and transparency of the membranes. The membranes did not exhibit any signs of cytotoxicity. When compared to other current scientific and technical benchmarks, the manufactured membranes displayed promising potential for various biomedical applications. Further research is nevertheless necessary to improve reproducible manufacturing, including a more uniform thickness, less impurity and physiological pH within the membranes.


2018 ◽  
Vol 42 (3) ◽  
pp. 2058-2066 ◽  
Author(s):  
Masoud Faraji ◽  
Neda Mohaghegh ◽  
Amir Abedini

A novel Ag/Benzene-Mod/TiO2 nanotubes/Ti plate was fabricated via photo-modification by benzene, followed by electrodeposition of Ag on the TiO2 nanotubes/Ti plate.


Author(s):  
Karthikeyan Subramani

This manuscript reviews about titanium surface modification techniques for its application in orthopaedic and dental implants. There are a few limitations in the long term prognosis of orthopaedic and dental implants. Poor osseointegration with bone, periimplant infection leading to implant failure and short term longevity demanding revision surgery, are to mention a few. Micro- and nanoscale modification of titanium surface using physicochemical, morphological and biochemical approaches have resulted in higher bone to implant contact ratio and improved osseointegration. With recent advances in micro, nano-fabrication techniques and multidisciplinary research studies focusing on bridging biomaterials for medical applications, TiO2 nanotubes have been extensively studied for implant applications. The need for titanium implant surface that can closely mimic the nanoscale architecture of human bone has become a priority. For such purpose, TiO2 nanotubes of different dimensions and architectural fashions at the nanoscale level are being evaluated. This manuscript discusses in brief about the in-vitro and in-vivo studies on titanium surface modification techniques. This manuscript also addresses the recent studies done on such nanotubular surfaces for the effective delivery of osteoinductive growth factors and anti bacterial/ anti inflammatory drugs to promote osseointegration and prevent peri-implant infection.


Sign in / Sign up

Export Citation Format

Share Document