scholarly journals Hydrogel Nanoparticle as a Functional Coating Layer in Biosensing, Tissue Engineering, and Drug Delivery

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 663
Author(s):  
Heejoo Cho ◽  
Sumin Jeon ◽  
Junghyeok Yang ◽  
Song Yi Baek ◽  
Doeun Kim

The development of functional coating materials has resulted in many breakthroughs in the discovery of energy, environmental, and biomedical applications. Responsive polymeric hydrogels are an example of smart coating materials due to their stimuli-responsive characteristics upon changes in their local environment. This review focuses on the introduction of hydrogel nanoparticles and their applications in functional layers as responsive coating materials. Hydrogels are explained by the composition of cross-links and monomers used for preparation. In particular, an important class of responsive hydrogels, that is, nanosized hydrogel particles (nanogels), are described for thee synthesis, modification, and application in assembly of functional coating layers. Finally, nanogel functional layers for biological applications will be discussed with recent advances in biosensing, tissue engineering, and drug delivery.

RSC Advances ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 4850-4857 ◽  
Author(s):  
Xue Jiao Liu ◽  
Hai Qiang Li ◽  
Bao Yuan Zhang ◽  
Ya Jun Wang ◽  
Xiu Yan Ren ◽  
...  

Stimuli-responsive hydrogels are becoming increasingly important for controlled drug delivery, biosensing, and tissue engineering. It would be much advantageous for intelligent hydrogels if they exhibit superior mechanical performances.


Drug Delivery ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 748-770 ◽  
Author(s):  
Nikhil Sood ◽  
Ankur Bhardwaj ◽  
Shuchi Mehta ◽  
Abhinav Mehta

Soft Matter ◽  
2021 ◽  
Author(s):  
Michael Meleties ◽  
Priya Katyal ◽  
Bonnie Lin ◽  
Dustin Britton ◽  
Jin Kim Montclare

Owing to their tunable properties, hydrogels comprised of stimuli sensitive polymers are one of the most appealing scaffolds with applications in tissue engineering, drug delivery and other biomedical fields. We...


Author(s):  
Ana C. Marques ◽  
Paulo J. Costa ◽  
Sérgia Velho ◽  
Maria H. Amaral

2021 ◽  
Vol 11 (23) ◽  
pp. 11369
Author(s):  
Ashni Arun ◽  
Pratyusha Malrautu ◽  
Anindita Laha ◽  
Hongrong Luo ◽  
Seeram Ramakrishna

The versatile natural polymer, collagen, has gained vast attention in biomedicine. Due to its biocompatibility, biodegradability, weak antigenicity, biomimetics and well-known safety profile, it is widely used as a drug, protein and gene carrier, and as a scaffold matrix in tissue engineering. Nanoparticles develop favorable chemical and physical properties such as increased drug half-life, improved hydrophobic drug solubility and controlled and targeted drug release. Their reduced toxicity, controllable characteristics of scaffolds and stimuli-responsive behavior make them suitable in regenerative medicine and tissue engineering. Collagen associates and absorbs nanoparticles leading to significant impacts on their biological functioning in any biofluid. This review will discuss collagen nanoparticle preparation methods and their applications and developments in drug delivery systems and tissue engineering.


2021 ◽  
Author(s):  
Giacomo Fabrini ◽  
Aisling Minard ◽  
Ryan A. Brady ◽  
Marco Di Antonio ◽  
Lorenzo Di Michele

Thanks to its biocompatibility, versatility and programmable interactions, DNA has been proposed as a building block for functional, stimuli-responsive frameworks with applications in biosensing, tissue engineering and drug delivery. Of particular importance for in vivo applications is the possibility of making such nano-materials responsive to physiological stimuli. Here we demonstrate how combining noncanonical DNA G-quadruplex (G4) structures with amphiphilic DNA constructs yields nanostructures, which we termed "Quad-Stars", capable of assembling into responsive hydrogel particles via a straightforward, enzyme-free, one-pot reaction. The embedded G4 structures allow one to trigger and control the assembly/disassembly in a reversible fashion by adding or removing K+ ions. Furthermore, the hydrogel aggregates can be photodisassembled upon near-UV irradiation in the presence of a porphyrin photosensitiser. The combined reversibility of assembly, responsiveness and cargo-loading capabilities of the hydrophobic moieties make Quad-Stars a promising candidate for biosensors and responsive drug delivery carriers.


2020 ◽  
Vol 21 (13) ◽  
pp. 4724 ◽  
Author(s):  
Sofia Municoy ◽  
María I. Álvarez Echazú ◽  
Pablo E. Antezana ◽  
Juan M. Galdopórpora ◽  
Christian Olivetti ◽  
...  

Smart or stimuli-responsive materials are an emerging class of materials used for tissue engineering and drug delivery. A variety of stimuli (including temperature, pH, redox-state, light, and magnet fields) are being investigated for their potential to change a material’s properties, interactions, structure, and/or dimensions. The specificity of stimuli response, and ability to respond to endogenous cues inherently present in living systems provide possibilities to develop novel tissue engineering and drug delivery strategies (for example materials composed of stimuli responsive polymers that self-assemble or undergo phase transitions or morphology transformations). Herein, smart materials as controlled drug release vehicles for tissue engineering are described, highlighting their potential for the delivery of precise quantities of drugs at specific locations and times promoting the controlled repair or remodeling of tissues.


2015 ◽  
Vol 3 (27) ◽  
pp. 5560-5568 ◽  
Author(s):  
Krishnamoorthy Lalitha ◽  
Y. Siva Prasad ◽  
C. Uma Maheswari ◽  
Vellaisamy Sridharan ◽  
George John ◽  
...  

We report coumarin-tris based hydrogel and curcumin encapsulated composite gel for stimuli responsive drug delivery applications.


2021 ◽  
Author(s):  
Ali Pourjavadi ◽  
Rozhin Heydarpour ◽  
Zahra Mazaheri Tehrani

This review highlights the medical applications of multi-stimuli-responsive hydrogels as self-healing hydrogels, antibacterial materials and drug-delivery systems.


Sign in / Sign up

Export Citation Format

Share Document