scholarly journals Effect of the Porosity, Roughness, Wettability, and Charge of Micro-Arc Coatings on the Efficiency of Doxorubicin Delivery and Suppression of Cancer Cells

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 664
Author(s):  
Mariya Borisovna Sedelnikova ◽  
Ekaterina G. Komarova ◽  
Yurii P. Sharkeev ◽  
Valentina V. Chebodaeva ◽  
Tatiana V. Tolkacheva ◽  
...  

Porous calcium phosphate coatings were formed by the micro-arc oxidation method on the surface of titanium for the loading and controlled release of the anticancer drug doxorubicin. The coatings’ morphology and microstructure were examined by scanning electron microscopy. The phase composition was determined with the help of X-ray diffraction analysis. Studies of the hydrophilic properties of the coatings and their zeta potential were carried out. Data on the kinetics of doxorubicin adsorption-desorption were obtained. In addition, the effect of calcium phosphate coatings impregnated with doxorubicin on the viability of the Neuro-2a cell line was revealed. The coating formed at low voltages of 200–250 V contained a greater number of branched communicating pores, and therefore they were able to adsorb a greater amount of doxorubicin. The surface charge also contributes to the process of the adsorption-desorption of doxorubicin, but this effect is not fully understood and further studies are required to identify it.

2011 ◽  
Vol 493-494 ◽  
pp. 477-482
Author(s):  
Felipe Nobre Moura ◽  
Luis Henrique Leme Louro ◽  
Luciano Andrade Gobbo ◽  
Marcelo Henrique Prado da Silva

This study proposes a hydrothermal process to produce monetite and zinc-doped calcium phosphate coatings with different (Ca+Zn)/P molar ratios, in an attempt to incorporate zinc benefits on bone formation to hydroxyapatite precursors. The method consists of coating niobium and titanium substrates in an aqueous solution rich in (PO4)3-and calcium (Ca)2+ions under specific conditions (pH ≡ 3.7, 80°C). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were performed to characterize the coatings. From XRD analysis, we concluded that substitution of Ca by Zn was feasible up to 15% mol Zn, and the new phase obtained was parascholzite (JCPDS-01-086-2372).


Author(s):  
Władysław Janusz ◽  
Ewa Skwarek

AbstractThe aim of the study was the basic incidence on the phenomenon of adsorption that occurs at the hydroxyapatite/malic acid interface, leading to a change in the surface properties of hydroxyapatite, Analytical methods used in the research: X-ray diffraction (XRD) as well as by the, adsorption–desorption of nitrogen (ASAP), potentiometric titration. The specific adsorption of malic acid ions at the hydroxyapatite interface was investigated by means of the radioisotope method. The zeta potential of hydroxyapatite dispersions was determined by electrophoresis with Zetasizer Nano ZS90 by Malvern. The particle sizes of hydroxyapatite samples were analyzed using Masteriszer 2000 Malvern. Studies on the kinetics of malic acid on hydroxyapatite from a solution with an initial concentration of 1 mmol/dm3 have shown that the adsorption process is initially fast, followed by a slow adsorption step. An increase in the pH of the solution causes a decrease in the malic acid adsorption as a result of competition with hydroxyl ions. The presence of adsorbed malic acid was confirmed by the FTIR measurements. The effect of malic acid adsorption on the zeta potential and particle size distribution of hydroxyapatite in the NaCl solution was investigated.


Author(s):  
Travis Blalock ◽  
Xiao Bai ◽  
Afsaneh Rabiei

The effect of substrate temperature and processing parameters on microstructure and crystallinity of calcium phosphate coatings deposited on heated substrates in an Ion Beam Assisted Deposition (IBAD) system are being studied. The experimental procedures include mechanical testing and film thickness measurements using bonding strength and profilometery. Cross-sectional scanning transmission electron microscopy (STEM) with energy dispersive X-ray spectroscopy (EDX) through the thickness of the film as well as scanning electron microscopy (SEM) with EDX at the top surface of the film was performed to evaluate the microstructure of the film. The coating crystallinity was studied through X-ray diffraction (XRD). The information gained from current analysis on the set temperature coatings will be used to refine the processing techniques of the Functionally Graded Hydroxyapatite (FGHA) coating.


2008 ◽  
Vol 368-372 ◽  
pp. 1194-1197 ◽  
Author(s):  
Chen Ma ◽  
Ying Hui Wang ◽  
Mu Qin Li ◽  
Li Jie Qu

Rare earth/calcium phosphate composite coatings were fabricated on the surface of Ti-6Al-4V by micro-arc oxidation (MAO) technique. The wear properties and corrosion resistant of rare earth/ calcium phosphate composite coatings in the simulated body fluid (SBF) have been investigated and the bioactivity of the composite coatings were evaluated. The results show that the friction coefficient of the composite coatings in the SBF is only 0.15~0.18 and the anode polarization potential of the coating has been obviously enhanced about 0.18V compared with that of coatings of calcium phosphate coatings. So the composite coatings have excellent wear and corrosion resistant properties. XRD analysis indicates that the composite coatings can induce hydroxyapatite to form on its surface after soaked in SBF for 9d, which shows that the composite coatings own good bioactivity.


2010 ◽  
Vol 660-661 ◽  
pp. 954-958
Author(s):  
Sara Verusca de Oliveira ◽  
Marcus Vinícius Lia Fook ◽  
Elaine Patrícia Araújo ◽  
Keila Machado Medeiros ◽  
Guilherme Portela Rabello ◽  
...  

The development of research in the area of advanced materials and tissue engineering has increased greatly in recent years found that bioceramics are outstanding in the replacement and regeneration of bone tissue, mainly formed by the calcium phosphate ceramics. The objective of this research is to obtain the calcium phosphate where Ca/P = 1.67 and 2.0, to observe the formation of phases after having subjected these materials to heat treatment. The calcium phosphate was produced by the wet method using a direct reaction of neutralization and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray microanalysis (EDS). The XRD results confirm the presence of hydroxyapatite phase in the sample with Ca/P = 1.67, where as the phosphates prepared with Ca/P = 2.0 ratio show a combination of hydroxyapatite and phase β- tricalcium phosphate. The micrographs obtained are characteristic of ceramic material called calcium phosphate. EDS confirmed the presence of Ca, P and O in the material.


2008 ◽  
Vol 368-372 ◽  
pp. 1577-1579
Author(s):  
Hai Jun Zhang ◽  
En Xia Xiu ◽  
Xiu Juan Wang ◽  
Quan Li Jia ◽  
Hong Wei Sun ◽  
...  

The thermal decomposition of ammonium aluminum carbonate hydroxide was studied under non-isothermal conditions in air. The decomposition kinetics were evaluated from data of TG-DTA by means of the Kissinger equation and the Coats-Redfern equation. The values of the activation energy E, the preexponential factor A and the algebraic expression of integral G(α) functions of the thermal decomposition were calculated. The ammonium aluminum carbonate hydroxide (AACH) was characterized by X-ray diffraction, differential thermal analysis and thermogravimetric and field emission scanning electron microscopy.


2013 ◽  
Vol 652-654 ◽  
pp. 1818-1821
Author(s):  
Zhen Fei Liu ◽  
Wei Qiang Wang ◽  
Min Qi

A porous titania (TiO2) coating with vermiform slots was prepared on the Ti substrate through micro-arc oxidation (MAO) treatment using sodium tetraborate as electrolyte. Morphologies and phase structure were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Results show that the rutile phase increases and anatase decreases gradually with increasing MAO time. The electrolyte of sodium tetraborate has significant influence on the formation of vermiform coatings, which determine the corrosive patterning in the first stage during MAO processing. The evolution of vermiform morphology is proposed as followed: some corrosive pores appear on the surface before arcing; afterward, the adjacent micropores in the dense regions link each other due to the high temperature result from continuous arc action; then, the micropores grow up to big pits and combine with each other with increasing MAO treating time; finally, the vermiform morphology forms on the surface of Ti metal.


Sign in / Sign up

Export Citation Format

Share Document