scholarly journals Measuring the Wall Thickness of a Trailing Arm Using Ultrasonic Measurement Model

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 773
Author(s):  
Feng Chen ◽  
Siqi Chen ◽  
Rongfan Zhang ◽  
Yongsheng Shi ◽  
Liangyao Gu

Trailing arms are widely used in the automobiles’ suspension system, and effective detection of their wall thickness is essential to ensure their mechanical properties and to evaluate the casting process. In this work, an ultrasonic measurement model (UMM) is firstly established with consideration of the curvature and thickness of the trailing arm, then the UMM is introduced to predict the theoretical ultrasonic waveforms with different hypothetical thicknesses of the trailing arm. Next, the experimental ultrasonic waveforms are collected and matched with the predicted theoretical waveforms by using the correlation matching algorithm. The hypothetical thickness with the best match is regarded as the wall thickness of the trailing arm. Finally, an automatic ultrasonic experiment was conducted on a trailing arm with a 5-degrees of freedom (DOF) manipulator, in which the ultrasonic beam can radiate into a trailing arm at normal incidence. The results are compared with those determined by the micrometer and microscope, showing that their relative errors are controlled within 0.08 mm, which reveals the effectiveness of the present method. The method can also work for wall thickness measurements of curved components with CAD models.

Author(s):  
D. Almonti ◽  
G. Baiocco ◽  
E. Mingione ◽  
N. Ucciardello

AbstractOver the last decades, additive manufacturing (AM) has become the principal production technology for prototypes and components with high added value. In the production of metallic parts, AM allows producing complex geometry with a single process. Also, AM admits a joining of elements that could not be realized with traditional methods. In addition, AM allows the manufacturing of components that could not be realized using other types of processes like reticular structures in heat exchangers. A solid mold investment casting that uses printed patterns overcomes typical limitations of additive processes such as expensive machinery and challenging process parameter settings. Indeed, rapid investment casting provides for a foundry epoxy pattern reproducing the component to exploit in the lost wax casting process. In this paper, aluminium radiators with flat heat pipes seamlessly connected with a cellular structure were conceived and produced. This paper aims at defining and investigating the principal foundry parameters to achieve a defect-free heat exchanger. For this purpose, different device CAD models were designed, considering four pipes’ thickness and length. Finite element method numerical simulations were performed to optimize the design of the casting process. Three different gate configurations were investigated for each length. The numerical investigations led to the definition of a castability range depending on flat heat pipes geometry and casting parameters. The optimal gate configuration was applied in the realization of AM patterns and casting processes


2015 ◽  
Vol 61 (4) ◽  
pp. 1034-1040 ◽  
Author(s):  
Eric K. Shang ◽  
Eric Lai ◽  
Alison M. Pouch ◽  
Robin Hinmon ◽  
Robert C. Gorman ◽  
...  

2006 ◽  
Vol 321-323 ◽  
pp. 497-500
Author(s):  
Hak Joon Kim ◽  
Sung Jin Song ◽  
Lester W. Schmerr

For the proper interpretation of ultrasonic measurement results from a side-drilled hole (SDH) using a rectangular transducer, it is very helpful to have a complete ultrasonic measurement model. A highly efficient ultrasonic beam model of a rectangular transducer and an accurate scattering model of a SDH are currently available. However, to develop such a complete measurement model, a reference model for the system efficiency factor is also needed. In this study a reference model suitable for a rectangular transducer is given and combined with existing models to develop a complete ultrasonic measurement model that can the predict ultrasonic signals from a SDH. Based on this model, we have calculated the ultrasonic signals from a SDH at different transducer orientations and compared the model-based predictions with experiments.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Sergio Ruiz de Galarreta ◽  
Aitor Cazón ◽  
Raúl Antón ◽  
Ender A. Finol

The goal of this work is to develop a framework for manufacturing nonuniform wall thickness replicas of abdominal aortic aneurysms (AAAs). The methodology was based on the use of computed tomography (CT) images for virtual modeling, additive manufacturing for the initial physical replica, and a vacuum casting process and range of polyurethane resins for the final rubberlike phantom. The average wall thickness of the resulting AAA phantom was compared with the average thickness of the corresponding patient-specific virtual model, obtaining an average dimensional mismatch of 180 μm (11.14%). The material characterization of the artery was determined from uniaxial tensile tests as various combinations of polyurethane resins were chosen due to their similarity with ex vivo AAA mechanical behavior in the physiological stress configuration. The proposed methodology yields AAA phantoms with nonuniform wall thickness using a fast and low-cost process. These replicas may be used in benchtop experiments to validate deformations obtained with numerical simulations using finite element analysis, or to validate optical methods developed to image ex vivo arterial deformations during pressure-inflation testing.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3537
Author(s):  
Christian Friedrich ◽  
Steffen Ihlenfeldt

Integrated single-axis force sensors allow an accurate and cost-efficient force measurement in 6 degrees of freedom for hexapod structures and kinematics. Depending on the sensor placement, the measurement is affected by internal forces that need to be compensated for by a measurement model. Since the parameters of the model can change during machine usage, a fast and easy calibration procedure is requested. This work studies parameter identification procedures for force measurement models on the example of a rigid hexapod-based end-effector. First, measurement and identification models are presented and parameter sensitivities are analysed. Next, two excitation strategies are applied and discussed: identification from quasi-static poses and identification from accelerated continuous trajectories. Both poses and trajectories are optimized by different criteria and evaluated in comparison. Finally, the procedures are validated by experimental studies with reference payloads. In conclusion, both strategies allow accurate parameter identification within a fast procedure in an operational machine state.


1970 ◽  
Vol 43 (511) ◽  
pp. 458-461 ◽  
Author(s):  
S. M. Jackson ◽  
G. P. Naylor ◽  
I. J. Kerby

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3439
Author(s):  
Peizhi Jia ◽  
Bin Zhang ◽  
Qibo Feng ◽  
Fajia Zheng

Based on the prior work on the six degrees of freedom (6DOF) motion errors measurement system for linear axes, and for the different types of machine tools and different installation methods, this study used a ray tracing idea to establish the measurement models for two different measurement modes: (1) the measurement head is fixed and the target mirror moves and (2) the target mirror is fixed and the measurement head moves. Several experiments were performed on the same linear guide using two different measurement modes. The comparative experiments show that the two measurement modes and their corresponding measurement models are correct and effective. In the actual measurement process, it is therefore possible to select the corresponding measurement model according to the measurement mode. Furthermore, the correct motion error evaluation results can be obtained.


Sign in / Sign up

Export Citation Format

Share Document