scholarly journals Research on the Performance of Diamond-Like Carbon Coatings on Cutting Aluminum Alloy: Cutting Experiments and First-Principles Calculations

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Biao Huang ◽  
Er-geng Zhang ◽  
Qiong Zhou ◽  
Rong-chuan Lin ◽  
Hao-ming Du

The purpose of this study is to investigate the cutting performance of amorphous carbon (a-C) coatings and hydrogenated amorphous carbon (a-C:H) coatings on machining 2A50 aluminum alloy. First-principles molecular dynamics simulation was applied to investigate the effect of hydrogen on the interaction between coatings and workpiece. The cross-section topography and internal structure of a-C and a-C:H films were characterized by field emission scanning electron microscopy and Raman spectroscopy. The surface roughness of the deposited films and processed workpiece were measured using a white light interferometer. The results show that the a-C-coated tool had the highest service life of 121 m and the best workpiece surface quality (Sq parameter of 0.23 μm) while the workpiece surface roughness Sq parameter was 0.35 and 0.52 μm when machined by the a-C:H-coated and the uncoated tool, respectively. Meanwhile, the build-up edge was observed on the a-C:H-coated tool and a layer of aluminum alloy was observed to have adhered to the surface of the uncoated tool at its stable stage. An interface model that examined the interactions between H-terminated diamond (111)/Al(111) surfaces revealed that H atoms would move laterally with the action of cutting heat (549 K) and increase the interaction between a-C:H and Al surfaces; therefore, Al was prone to adhere to the a-C:H-coated tool surface. The a-C coating shows better performance on cutting aluminum alloy than the a-C:H coating.

Author(s):  
V N Koinkar ◽  
B Bhushan

For long durability of magnetic media and head sliders, protective overcoats of hydrogenated amorphous carbon (a-C:H) are generally used. In this study, microtribological studies of hydrogenated amorphous carbon coatings deposited on a single-crystal silicon using three different deposition techniques—sputtering, ion beam and cathodic arc—were studied using atomic force/friction force microscopy (AFM/FFM). Roughnesses of all coatings at two scan sizes of 1 μm × 1 μm and 10 μm × 10 μm are comparable. Surface topography of sputtered carbon coating shows some particulates on the surface. Cathodic arc carbon coating exhibits the lowest coefficient of friction value followed by ion beam and sputtered carbon coatings. Microscratch and wear resistance and nanohardness of cathodic arc carbon coating are superior to those of ion beam and sputtered carbon coatings. Cathodic arc deposited carbon coatings are potential candidates for magnetic disks and heads.


2012 ◽  
Vol 37 ◽  
pp. 1-7 ◽  
Author(s):  
Jens Schaufler ◽  
Karsten Durst ◽  
Thomas Haas ◽  
Roland Nolte ◽  
Heinz Werner Höppel ◽  
...  

2012 ◽  
Vol 152-154 ◽  
pp. 74-79
Author(s):  
Tadahiro Wada ◽  
Koji Iwamoto ◽  
Hiroaki Sugita

In cutting aluminum alloy 6061, continuous chips have a negative influence on the machining operation. Usually, Pb is added in order to break continuous chips. However, from the standpoint of environmental protection, it is necessary to improve chip breakability without adding Pb. One effective measure to improve chip breakability is by adding Si to aluminum alloy 6061. However, the influence of Si content on tool wear has not been fully examined. In this study, in order to clarify the influence of a diamond-like carbon (DLC) coating layer with a Cr-based interlayer, namely (Al,Cr)N, on cutting performance, aluminum alloys having different Si contents were turned. The substrate of the tool material was high-speed steel (1.4%C). The tool wear and the surface roughness were experimentally investigated. The following results were obtained: (1) In cutting two kinds of Al-Si alloys, namely the Al-2%Si alloy and Al-4%Si alloy, the progress of wear of the DLC/(Al,Cr)N-coated tool was slower than that of the DLC-coated tool. Therefore, the (Al,Cr)N interlayer was effective for decreasing the tool wear of the DLC-coated tool. (2) The wear progress of the two kinds of DLC-coated tools in cutting of Al-4%Si alloy was faster than that in cutting of Al-2%Si alloy. (3) In cutting of Al-2%Si alloy with the (Al,Cr)N/DLC-coated tool, the surface roughness was almost constant in the range of a cutting distance from 0.1 km to 9.5 km.


Wear ◽  
2006 ◽  
Vol 260 (1-2) ◽  
pp. 62-74 ◽  
Author(s):  
Naoki Fujisawa ◽  
David R. McKenzie ◽  
Natalie L. James ◽  
John C. Woodard ◽  
Michael V. Swain

Sign in / Sign up

Export Citation Format

Share Document