scholarly journals Analysis of Surface Properties of Ag and Ti Ion-Treated Medical Textiles by Metal Vapor Vacuum Arc Ion Implantation

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Ali Akpek

The study focuses on the effects of Ag (silver) and Ti (titanium) ions on textiles by MEVVA (metal vapor vacuum arc) ion implantation. In order to comprehend this, the research was executed in three parts. In the first part, the antibacterial efficiencies of Ag and TiO2 were investigated in detail since the antibacterial capabilities of Ag and TiO2 are well known. A group of polyester- and cotton-based medical textiles were modified by Ag and TiO2 ions, with doses ranging from 5 × 1015 to 5 × 1016 ion/cm2. To determine the adhesion capabilities of the implanted ions on surfaces, after the first round of antibacterial tests, these medical textiles were washed 30 times, and then antibacterial tests were performed for the second time. The results were also compared with nanoparticle-treated medical textiles. In the second part, the corrosion and friction capabilities of Ag and Ti ion-implanted polyester textiles, with a dose of 5 × 1015 ion/cm2, were investigated. Finally, the UV protection capabilities of Ag and Ti ion-implanted polyester textiles, with a dose of 5 × 1015 ion/cm2, were investigated. The experiments showed that even after 30 washes, the TiO2 ion-implanted polyester textile had almost 85% antibacterial efficiency. In addition, Ti ion implantation reduced the friction coefficiency of a polyester textile by almost 50% when compared with an untreated textile. Finally, the Ag-ion-implanted polyester textile provided a UV protection factor of 30, which is classified as very good protection.

2001 ◽  
Vol 665 ◽  
Author(s):  
Wu Yuguang ◽  
Zhang Tonghe ◽  
Zhang Huixing ◽  
Zhang Xiaoji ◽  
Cui Ping ◽  
...  

ABSTRACTPolyethylene terephthalate (PET) has been modified by Cr ion implantation with a dose range from 1×1016to 2×1017ions /cm2 using a metal vapor vacuum arc MEVVA source. The surface morphology was observed by atomic force microscopy (AFM). The Cr atom precipitation was found. The changes of the structure and composition have been observed with transmission electron microscope (TEM). The TEM photos revealed the presence of Cr nano-meter particles on the implanted PET. It is believed that the change would cause the improvement of the conductive properties and wear resistance. The electrical properties of PET have been improved after metal ion implantation. The resistivity of Cr ion implanted PET decreased obviously with an increase of ion dose. When the metal ion dose with 2×1017cm−2 was implanted into PET, the resistivity of PET could be less than 0.1 Ωm. But when Si or C ions with same dose are implanted PET, the resistivity of PET would be up to several Ωm. The result show that the resistivity of Cr ion implanted sample is obviously lower than that of Si- and C-implanted one. After Cr implantation, the surface hardness and modulus could be increased. The property of the implanted PET has modified greatly. The hardness and modulus of Cr implanted PET with dose of 2×1017/cm2 is 9.5 and 3.1 times greater than that of pristine PET. So we can see that wear resistance improved greatly. The Cr ion beam modification mechanism of PET will be discussed.


1991 ◽  
Vol 235 ◽  
Author(s):  
Kin Man Yu ◽  
Ian G. Brown ◽  
Seongil Im

ABSTRACTWe have synthesized single crystal Si1−xGex alloy layers in Si <100> crystals by high dose Ge ion implantation and solid phase epitaxy. The implantation was performed using the metal vapor vacuum arc (Mevva) ion source. Ge ions at mean energies of 70 and 100 keV and with doses ranging from 1×1016 to to 7×1016 ions/cm2 were implanted into Si <100> crystals at room temperature, resulting in the formation of Si1−xGex alloy layers with peak Ge concentrations of 4 to 13 atomic %. Epitaxial regrowth of the amorphous layers was initiated by thermal annealing at temperatures higher than 500°C. The solid phase epitaxy process, the crystal quality, microstructures, interface morphology and defect structures were characterized by ion channeling and transmission electron microscopy. Compositionally graded single crystal Si1−xGex layers with full width at half maximum ∼100nm were formed under a ∼30nm Si layer after annealing at 600°C for 15 min. A high density of defects was found in the layers as well as in the substrate Si just below the original amorphous/crystalline interface. The concentration of these defects was significantly reduced after annealing at 900°C. The kinetics of the regrowth process, the crystalline quality of the alloy layers, the annealing characteristics of the defects, and the strains due to the lattice mismatch between the alloy and the substrate are discussed.


2007 ◽  
Vol 25 (1) ◽  
pp. 110-116 ◽  
Author(s):  
K. P. Purushotham ◽  
L. P. Ward ◽  
N. Brack ◽  
P. J. Pigram ◽  
P. Evans ◽  
...  

2000 ◽  
Vol 648 ◽  
Author(s):  
X.Q. Cheng ◽  
H.N. Zhu ◽  
B.X. Liu

AbstractFractal pattern evolution of NiSi2 grains on a Si surface was induced by high current pulsed Ni ion implantation into Si wafer using metal vapor vacuum arc ion source. The fractal dimension of the patterns was found to correlate with the temperature rise of the Si substrate caused by the implanting Ni ion beam. With increasing of the substrate temperature, the fractal dimensions were determined to increase from less than 1.64, to beyond the percolation threshold of 1.88, and eventually up to 2.0, corresponding to a uniform layer with fine NiSi2 grains. The growth kinetics of the observed surface fractals was also discussed in terms of a special launching mechanism of the pulsed Ni ion beam into the Si substrate.


2003 ◽  
Vol 220 (1-4) ◽  
pp. 40-45 ◽  
Author(s):  
Chun Rong ◽  
Jizhong Zhang ◽  
Wenzhi Li

2000 ◽  
Vol 611 ◽  
Author(s):  
X. W. Zhang ◽  
S. P. Wong ◽  
W. Y. Cheung ◽  
F. Zhang

ABSTRACTNickel disilicide layers were prepared by nickel ion implantation into silicon substrates using a metal vapor vacuum arc ion source at various beam current densities to an ion dose of 6×1017 cm−2. Characterization of the as-implanted and annealed samples was performed using Rutherford backscattering spectrometry, x-ray diffraction, electrical resistivity and Hall effect measurements. The temperature dependence of the sheet resistivity and the Hall mobility from 30 to 400 K showed peculiar peak and valley features varying from sample to sample. A two-band model was proposed to explain the observed electrical transport properties.


Sign in / Sign up

Export Citation Format

Share Document