The influence of nanostructure formation on properties for Cr implanted PET

2001 ◽  
Vol 665 ◽  
Author(s):  
Wu Yuguang ◽  
Zhang Tonghe ◽  
Zhang Huixing ◽  
Zhang Xiaoji ◽  
Cui Ping ◽  
...  

ABSTRACTPolyethylene terephthalate (PET) has been modified by Cr ion implantation with a dose range from 1×1016to 2×1017ions /cm2 using a metal vapor vacuum arc MEVVA source. The surface morphology was observed by atomic force microscopy (AFM). The Cr atom precipitation was found. The changes of the structure and composition have been observed with transmission electron microscope (TEM). The TEM photos revealed the presence of Cr nano-meter particles on the implanted PET. It is believed that the change would cause the improvement of the conductive properties and wear resistance. The electrical properties of PET have been improved after metal ion implantation. The resistivity of Cr ion implanted PET decreased obviously with an increase of ion dose. When the metal ion dose with 2×1017cm−2 was implanted into PET, the resistivity of PET could be less than 0.1 Ωm. But when Si or C ions with same dose are implanted PET, the resistivity of PET would be up to several Ωm. The result show that the resistivity of Cr ion implanted sample is obviously lower than that of Si- and C-implanted one. After Cr implantation, the surface hardness and modulus could be increased. The property of the implanted PET has modified greatly. The hardness and modulus of Cr implanted PET with dose of 2×1017/cm2 is 9.5 and 3.1 times greater than that of pristine PET. So we can see that wear resistance improved greatly. The Cr ion beam modification mechanism of PET will be discussed.

1989 ◽  
Vol 147 ◽  
Author(s):  
I. G. Brown ◽  
M. D. Rubin ◽  
K. M. Yu ◽  
R. Mutikainen ◽  
N. W. Cheung

AbstractWe have used high-dose metal ion implantation to ‘fine tune’ the composition of Y-Ba- Cu-O thin films. The films were prepared by either of two rf sputtering systems. One system uses three modified Varian S-guns capable of sputtering various metal powder targets; the other uses reactive rf magnetron sputtering from a single mixed-oxide stoichiometric solid target. Film thickness was typically in the range 2000–5000 A. Substrates of magnesium oxide, zirconia-buffered silicon, and strontium titanate have been used. Ion implantation was carried out using a metal vapor vacuum arc (MEVVA) high current metal ion source. Beam energy was 100–200 keV, average beam current about 1 mA, and dose up to about 1017 ions/cm2. Samples were annealed at 800 – 900°C in wet oxygen. Film composition was determined using Rutherford Backscattering Spectrometry (RBS), and the resistivity versus temperature curves were obtained using a four-point probe method. We find that the zero-resistance temperature can be greatly increased after implantation and reannealing, and that the ion beam modification technique described here provides a powerful means for optimizing the thin film superconducting properties.


2000 ◽  
Vol 648 ◽  
Author(s):  
X.Q. Cheng ◽  
H.N. Zhu ◽  
B.X. Liu

AbstractFractal pattern evolution of NiSi2 grains on a Si surface was induced by high current pulsed Ni ion implantation into Si wafer using metal vapor vacuum arc ion source. The fractal dimension of the patterns was found to correlate with the temperature rise of the Si substrate caused by the implanting Ni ion beam. With increasing of the substrate temperature, the fractal dimensions were determined to increase from less than 1.64, to beyond the percolation threshold of 1.88, and eventually up to 2.0, corresponding to a uniform layer with fine NiSi2 grains. The growth kinetics of the observed surface fractals was also discussed in terms of a special launching mechanism of the pulsed Ni ion beam into the Si substrate.


2005 ◽  
Vol 107 ◽  
pp. 107-110
Author(s):  
Masaya Iwaki

A study has been made of surface properties of carbon materials modified by ion beams. Substrates used were natural diamonds, glass-like carbon plates and polymer sheets. Ion species were chemically-active elements such as C, N and O, inert gas elements such as He, Ne and Ar, and metallic elements such as Cr and Ti. It was found that diamond becomes electrically conductive in ion implanted layers, which are amorphous or graphite-like structures. Electrical conductivity depends on implanted species, doses and target temperatures. It was found that glass-like carbon consisting of graphite and disordered graphite becomes amorphous due to ion beam bombardment. Amorphization causes the wear resistance to improve. The electrochemical properties changes depending on implanted species. The wear resistance and electrochemical properties depended on the target temperature during ion implantation. Ion beam bombardment to polymers has been carried out to control the electrical conductivity, cell adhesion and bio-compatibility. The electrical conductivity of polyimide films increases as the dose increases. The saturated sheet resistivity of implanted layers depends on ion species, dose and dose rate. It was found that the cell adhesion can be controlled by ion beam bombardment. The results were used in the fields of clinical examinations. In summary, ion beam bombardment to carbon materials is useful to control the carbon structures and surface properties depending on ion implantation conditions.


2021 ◽  
Vol 248 ◽  
pp. 04006
Author(s):  
Anatoly Borisov ◽  
Boris Krit ◽  
Igor Suminov ◽  
Mikhail Ovchinnikov ◽  
Sergey Tikhonov

The combined effect of ion and laser beams on physical and mechanical properties of metal and alloy surfaces has been studied. The technique of determining the main parameters of polyenergetic ion implantation using a vacuum-arc ion source is proposed and evaluated. It is found that treatment with titanium ions and the subsequent laser thermal hardening increase microhardness of steel 45 and U8 up to 6 times.


2011 ◽  
Vol 1354 ◽  
Author(s):  
Emel Sokullu-Urkac ◽  
Ahmet Oztarhan ◽  
Ismet Deliloglu-Gurhan ◽  
Sultan Gulce-Iz ◽  
Feyzan Ozdal-Kurt ◽  
...  

ABSTRACTWe have explored the application of ion implantation as a tool for the enhancement of neural cell growth on glass surfaces. Glass substrates were ion implanted with gold and with carbon using a metal vapor vacuum arc (MEVVA) ion source-based implantation system at Ege University Surface Modification Laboratory. The implantation dose was varied over the range 1014 – 1017 ions/cm2 and the ion energy spanned the range 20 – 80 keV. B35 neural cells were seeded and incubated on the implanted substrates for 48h at 37°C. After 2-days in culture the cell attachment behavior was characterized using phase contrast microscopy. The adhesion and direct contact of neural cells on these ion implanted glass surfaces were observed


2000 ◽  
Vol 647 ◽  
Author(s):  
X.Q. Cheng ◽  
H.N. Zhu ◽  
B.X. Liu

AbstractSamarium ion implantation was conducted to synthesize Sm-disilicide films on silicon wafers, using a metal vapor vacuum arc ion source and the continuous SmSi2 films were directly obtained with neither external heating during implantation nor post-annealing. Diffraction and surface morphology analysis confirmed the formed Sm-disilicilde films were of a fine crystalline structure under appropriate experimental conditions. Besides, the formation mechanism of the SmSi2phase is also discussed in terms of the temperature rise caused by ion beam heating and the effect of ion dose on the properties of the SmSi2films.


2006 ◽  
Vol 13 (04) ◽  
pp. 519-524
Author(s):  
J. H. YANG ◽  
M. F. CHENG ◽  
X. D. LUO ◽  
T. H. ZHANG

The PVD- TiN film was implanted with titanium ions and the improvement in surface wear resistance was investigated. Ti ion implantation was done using a metal vapor vacuum arc (MEVVA) ion source with an implantation dose of 2 × 1016 ions/cm2 and at an extraction voltage of 48 kV. The wear characteristics of the implanted zone was measured and compared to the performance of the unimplanted zone by a pin-on-disc apparatus and an optical interference microscope. The structure of the implanted zone and unimplanted one was observed by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). A dynamic TRIM called TRIDYN was used to calculate the concentration depth profile of implanted Ti in TiN to investigate the profile of multi-charge state ions. The results showed that the improved wear resistance of the TiN film was mainly due to the presence of nano-order TiN crystal grains after Ti ion implantation.


2007 ◽  
Vol 253 (6) ◽  
pp. 3276-3283 ◽  
Author(s):  
Miao Yu ◽  
Jizhong Zhang ◽  
Dexing Li ◽  
Qingli Meng ◽  
Wenzhi Li

Sign in / Sign up

Export Citation Format

Share Document