scholarly journals The Effects of CuO and SiO2 on Aluminum AA6061 Hybrid Nanocomposite as Reinforcements: A Concise Review

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 972
Author(s):  
Muntadher Sabah Msebawi ◽  
Zulkiflle Leman ◽  
Shazarel Shamsudin ◽  
Suraya Mohd Tahir ◽  
Che Nor Aiza Jaafar ◽  
...  

Hybrid composites are obtained by embedding multiple micro and nano reinforcements into the matrix materials. These hybrid composites are helpful to obtain the useful properties of matrix and reinforcement materials. Aluminum matrix is one the most common matrix materials due to its excellent thermal and electrical properties. This review covers various aspects of nanoparticle-reinforced Al hybrid composites. Solid-state recycling of Al only consumes around 5% of the energy utilized in the conventional extraction and recycling methods. This review revolves around the induction of silica and copper oxide nanoparticles into the solid-state recycled Al matrix material to form the hybrid composite. These nanoparticles enhance stiffness, toughness, and high temperature stability for Al hybrid composites. A detailed analysis was carried out for AA6061-grade Al matrix materials along with the silica and copper oxide nanoparticles. The present work focused on the effects of nano silica and nano copper oxide particle reinforcements on Al-based composite manufactured via hot extrusion process. The composite fabrication through solid-state recycling is discussed in detail. A detailed analysis for the effects of volume fraction and wt.% of CuO and SiO2 reinforcement particles was carried out by various characterization techniques. A detailed comparison in terms of mechanical performance of Al-based composites with the addition of nano silica and nano copper oxide particles is presented here to investigate the efficiency and performance of these particles.

RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3346-3353
Author(s):  
Iman Khaldari ◽  
Mohammad Reza Naghavi ◽  
Elaheh Motamedi

Among the conventional methods in synthesizing nanoparticles, the methods that use biological resources, as reducing and stabilizing agents, can be considered eco-friendly methods.


2018 ◽  
Vol 9 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Niaz Monadi ◽  
Samira Saeednia ◽  
Parvaneh Iranmanesh ◽  
Mehdi H. Ardakani ◽  
Samira Sinaei

Introduction: In this study the synthesis and characterization of copper oxide nanoparticles via solid state thermal decomposition of a recently synthesized aqua nitrato copper(II) complex with a tridentate Schiff-base ligand (1) as a new precursor are reported. Materials & Methods: The copper complexes were obtained by sonochemical and solvothermal process and characterized by Scanning Electron Microscopy (SEM), X-ray powder Diffraction (XRD) and FT-IR spectroscopy. The thermal stability of compound (1) was studied by Thermogravimetric Analysis (TGA). The amount of initial reagents and the role of reaction time on size and morphology of nanostructure compound (1) were studied. CuO nanoparticles were simply synthesized at 500 oC under air atmosphere. Results & Conclusion: The diameter of CuO nanoparticles was estimated to be about 200 and 30 nm from copper complex precursor obtained by sonochemical and solvothermal methods respectively.


Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Hemalatha D ◽  
Saraswath S

In material science, green method for synthesis of nanomaterials is feasible, cheaper and eco-friendly protocol. To accomplish this phenomenon, present study was aimed to synthesize Copper oxide nanoparticles using leaf extract of Aloevera with two different precursors CuCl2.2H2O (Cupric chloride) and CuSo4.5H2O (Cupric sulfate). The extraction of Aloevera is employed as reducing and stabilizing agent for this synthesis.Copper oxide Nanoparticles is effective use of biomedical application due to their antibacterial function. The synthesized Copper oxide nanoparticles were characterized by X-Ray Diffraction Spectroscopy (XRD), Energy Dispersive Spectroscopy (EDX), FourierTransform Infrared Spectroscopy (FT- IR) and Scanning Electron Microscope(SEM). XRD studies reveal the crystallographic nature of Copper oxide nanoparticles. Furthermore the Copper oxide nanoparticles have good Antibacterial activity against both gram negative (E.Coli, Klebsiella pneumonia) and gram positive (Bacillus cereus, Staphylococcus aureus)bacteria.


Author(s):  
Monika Vats ◽  
Shruti Bhardwaj ◽  
Arvind Chhabra

Background & Objective: Nanoparticles are used in cosmetic and dermatologic products, due to better skin penetration properties. Incorporation of natural products exhibiting medicinal properties in nano-preparations could significantly improve efficacy of these products and improve the quality of life without the side effects of synthetic formulations. Methods: We here report green synthesis of Copper Oxide nanoparticles, using Cucumber extract, and their detailed biophysical and bio-chemical characterization. Results: These Copper Oxide-Cucumber nanoparticles exhibit significant anti-bacterial and anti-fungal properties, Ultra Violet-radiation protection ability and reactive-oxygen species inhibition properties. Importantly, these nanoparticles do not exhibit significant cellular toxicity and, when incorporated in skin cream, exhibit skin rejuvenating properties. Conclusion: Our findings have implications for nanoparticle-based cosmetics and dermatologic applications.


Sign in / Sign up

Export Citation Format

Share Document