scholarly journals Experimental and Numerical Investigation of Load Failure at the Interface Joint of Repaired Potholes Using Hot Mix Asphalt with Steel Fiber Additive

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1160
Author(s):  
Mohamed S. Eisa ◽  
Fahmy S. Abdelhaleem ◽  
Vivian A. Khater

The maintenance of potholes is a long-standing problem. Previous studies focused on pothole patching materials and methods but not on bonding at the interface joint. In this study, the influence of the patching shape and depth on the bonding at the interface joint using two patching materials: hot mix asphalt (HMA) and hot mix asphalt containing 5% (by volume) steel fiber (HMA+) was investigated. Slabs with circular and square potholes in the middle with different depths (35, 50 and 70 mm) were prepared. The two shapes of potholes were patched with two patching materials: HMA and HMA+, at different depths. The slabs were tested after patching using a rigid steel frame. The experimental results were compared with those obtained from finite element analysis using the ABAQUS software, applying the same model of slabs with the same dimensions and properties of the materials used. The results indicated that the bonding at joint interface for circular-patched potholes slightly improved using HMA+ and this was independent of patching depth. As for the square-patched potholes, the bonding at the interface joint was better than for the circular-patched ones; the bonding increased with increasing depth. Using HMA+ for patching the square-patched potholes, the bonding at the interface joint slightly increased, only for the 3.5 cm depth.

2021 ◽  
Author(s):  
Fereshteh Hashemi ◽  
Faezeh Jafari

AbstractThe behavior of box-shaped columns under heating is investigated. For this purpose, the various sections of thin-wall box-shaped columns were modeled and verified in different temperature ranges by ABAQUS software. The results of this research showed that increasing the thickness leads to increase the buckling stability of column under temperature change. Since the behavior of column will be better than thinner columns under climate change because of the increase in the modulus of elasticity. The solid columns have better buckling stability than hollow columns in normal conditions.


2014 ◽  
Vol 49 (9) ◽  
pp. 1057-1069 ◽  
Author(s):  
Baris Sabuncuoglu ◽  
Svetlana Orlova ◽  
Larissa Gorbatikh ◽  
Stepan V Lomov ◽  
Ignaas Verpoest

Author(s):  
Hocine Haouari ◽  
Ali Bouafia

Centrifuge modelling and finite element analysis are powerful tools of research on the lateral pile/soil interaction. This paper aims at presenting the main results of experimental and numerical analysis of the pile response under monotonic lateral loading in sand. After description of the experimental devices, it focuses on the determination of the load-transfer P-Y curves for rigid and semi-rigid piles embedded in dry dense sand by using the experimental bending moment profiles obtained in centrifuge tests, as well as by a three-dimensional finite element models using ABAQUS Software. The elastic perfectly plastic Mohr-Coulomb constitutive model has been used to describe the soil response, and the surface-to-surface contact method of ABAQUS software has been used to take into account the nonlinear response at soil/pile interface. The analysis methodology has allowed to propose a hyperbolic function as a model to construct P-Y curves for rigid and semi-rigid piles embedded in dry dense sand, this model is governed by two main parameters, which are the initial subgrade reaction modulus, and the lateral soil resistance, the latter has been formulated in terms of Rankine’s passive earth pressure coefficient, the sand dry unit weight, and the pile diameter.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaowei Wang ◽  
Yingmin Li ◽  
Weiju Song ◽  
Jun Xu

Based on the stiffness limitations of the midtower in multitower cable-stayed bridges, a new stiffening system (tie-down cables) is proposed in this paper. The sag effects and wind-induced responses can be reduced with the proposed system because tie-down cables are short and aesthetic compared with traditional stiffening cables. The results show that the stiffening effect of tie-down cables is better than that of traditional stiffening cables in controlling the displacement and internal force of the bridge based on a static experiment and finite element analysis. Therefore, the proposed system can greatly improve the overall stiffness of a bridge, and its stiffening effect is better than that of traditional stiffening cables in controlling the displacement and internal force. The results provide a reference for the application of such systems in practical engineering.


2014 ◽  
Vol 651-653 ◽  
pp. 1197-1200
Author(s):  
Kai Wen Li ◽  
Zhi Yang Li ◽  
Yun Zou

Finite element analysis could be used as a supplementary means to investigate mechanical behavior. ABAQUS software is conducted to analyze steel reinforced concrete (SRC) columns. Firstly, in order to validate the rationality of the analytical model, finite element models of test specimens are established to simulate the test process. By comparing the analytical results with experimental ones, it is found that the results from finite element analysis coincide well with that from test. So ABAQUS software could be used as a supplementary means to simulate SRC column mechanical behavior . Further the ductility and ultimate capacity of SRC columns are studied with the changes of steel bone ratio and the axial compressive ratio.


2014 ◽  
Vol 936 ◽  
pp. 1414-1418
Author(s):  
Lin Chun Zhang

In order to estimate seismic behavior of LYTAG concrete, the seismic behavior of ordinary concrete have been studied in comparison with LYTAG concrete in this article. At first it discusses the advantages of LYTAG concrete, and then it draws following conclusions through the contrast tests of LYTAG concrete and ordinary concrete and the method of finite element analysis. The seismic performance of Lytag concrete is better than that of ordinary concrete. LYTAG concrete has better social and economic benefits than ordinary concrete from the aspects of seismic fortification.


Sign in / Sign up

Export Citation Format

Share Document