scholarly journals Providing a Specified Level of Electromagnetic Shielding with Nickel Thin Films Formed by DC Magnetron Sputtering

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1455
Author(s):  
Oleg A. Testov ◽  
Andrey E. Komlev ◽  
Kamil G. Gareev ◽  
Ivan K. Khmelnitskiy ◽  
Victor V. Luchinin ◽  
...  

Nickel films of 4–250 nm thickness were produced by DC magnetron sputtering onto glass and silicon substrates. The electrical properties of the films were investigated by the four-probe method and the surface morphology of the films was studied by atomic force microscopy. To measure the shielding effectiveness, a portable closed stand based on horn antennas was used. A theoretical assessment of the shielding effectiveness of nickel films of various thickness under electromagnetic radiation of a range of frequencies was carried out using two different approximations. The results demonstrate the shielding effectiveness of up to 35 dB of the nickel thin films in the frequency range of 2–18 GHz.

2016 ◽  
Vol 24 (04) ◽  
pp. 1750053 ◽  
Author(s):  
LINWEN WANG ◽  
LING LI ◽  
WEI-DONG CHEN

In this paper, we studied the surface morphology of silver (Ag) thin films deposited on glass substrate by using the DC magnetron sputtering with various power conditions at room temperature. The surface morphology, the optical and electrical properties were measured by AFM (Atomic Force Microscopy), UV–Vis Spectrophotometer (Lambda 950), and the four-probe method (RTS-9, Four Probes Technology). The effect of the sputtering power on the root-mean-square (RMS) surface roughness of Ag thin films was analyzed. The experiment results showed that the RMS value was lowest in the range from 60[Formula: see text]W to 80[Formula: see text]W. At the same time, the effect of the thickness on optical transmittance and sheet resistance was also investigated. We found the rough surface was prejudiced to inducing sheet resistance and enhancing the optical transmittance when the thickness of Ag thin films was thin. In addition, the excitation of the localized surface plasmon resonance (LSPR) was due to Ag nanoparticles (NPs) based on the analysis of the FDTD (finite-difference time-domain) simulation.


1999 ◽  
Vol 353 (1-2) ◽  
pp. 194-200 ◽  
Author(s):  
C. Coupeau ◽  
J.F. Naud ◽  
F. Cleymand ◽  
P. Goudeau ◽  
J. Grilhé

2000 ◽  
Vol 648 ◽  
Author(s):  
D. Tsamouras ◽  
G. Palasantzas ◽  
J. Th. M. De Hosson ◽  
G. Hadziioannou

AbstractGrowth front scaling aspects are investigated for PPV-type oligomer thin films vapor- deposited onto silicon substrates at room temperature. For film thickness d~15-300 nm, commonly used in optoelectronic devices, correlation function measurement by atomic force microscopy yields roughness exponents in the range H=0.45±0.04, and an rms roughness amplitude which evolves with film thickness as a power law σ∝ dβ with β=0.28±0.05. The non-Gaussian height distribution and the measured scaling exponents (H and β) suggest a roughening mechanism close to that described by the Kardar-Parisi-Zhang scenario.


2015 ◽  
Vol 754-755 ◽  
pp. 591-594
Author(s):  
Haslinda Abdul Hamid ◽  
M.N. Abdul Hadi

The codoped ZnO thin film were deposited by DC magnetron sputtering on silicon (111) followed by annealing treatment at 200 °C and 600 °C for 1 hour in nitrogen and oxygen gas mixture. Structural investigation was carried out by scanning electron microscopy (SEM), atomic force microscopy and x-ray diffraction (XRD). Film roughness and grain shape were found to be correlated with the annealing temperatures.


1996 ◽  
Vol 436 ◽  
Author(s):  
Cengiz S. Ozkan ◽  
William D. Nix ◽  
Huajian Gao

AbstractHeteroepitaxial Si1-xGex. thin films deposited on silicon substrates exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. In these films, surface roughening can take place in the form of ridges which can be aligned along <100> or <110> directions, depending on the film thickness. In this paper, we investigate this anisotropic dependence of surface roughening and present an analysis of it. We have studied the surface roughening behaviour of 18% Ge and 22% Ge thin films subjected to controlled annealing experiments. Transmission electron microscopy and atomic force microscopy have been used to study the morphology and microstructure of the surface ridges and the dislocations that form during annealing.


2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ronak Rahimi ◽  
V. Narang ◽  
D. Korakakis

PTCDI-C8 due to its relatively high photosensitivity and high electron mobility has attracted much attention in organic semiconductor devices. In this work, thin films of PTCDI-C8 with different thicknesses were deposited on silicon substrates with native silicon dioxide using a vacuum thermal evaporator. Several material characterization techniques have been utilized to evaluate the structure, morphology, and optical properties of these films. Their optical constants (refractive index and extinction coefficient) have been extracted from the spectroscopic ellipsometry (SE). X-ray reflectivity (XRR) and atomic force microscopy (AFM) were employed to determine the morphology and structure as well as the thickness and roughness of the PTCDI-C8 thin films. These films revealed a high degree of structural ordering within the layers. All the experimental measurements were performed under ambient conditions. PTCDI-C8 films have shown to endure ambient condition which allows pots-deposition characterization.


Author(s):  
Jorge Morales Hernández ◽  
Jose Manuel Juárez ◽  
Raul Herrera Basurto ◽  
Héctor Herrera Hernández ◽  
Héctor Javier Dorantes Rosales

Abstract Significant contribution on corrosion-erosion resistance of Ni3B-TiB2 nanocomposite coating of 1µm of thickness, deposited by DC magnetron Sputtering on stainless steel 304 substrates was studied. Nickel phase (γ Ni) plus Ni3B-TiB2 phases were synthesized previously by Mechanical Alloying (MA). Solid cathode (76.2 mm of diameter and 3 mm of thickness) used to grow thin films was manufactured with the alloyed powders, applying a uniaxial load of 70 MPa at room temperature and sintered at 900° C for two hours. Microstructure and mechanical properties of the coatings were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation, and wear test with a ball-on-disc tribometer. Compact coating of Ni3B-TiB2 with a microstructure of prismatic crystals after annealing treatment, showing a uniform coating with good adherence and low friction coefficient of 0.5, correlated with a low roughness of Ra ≈ 0.0439±0.0069 µm. The average hardness of 537.4 HV (5265.0 MPa) and wear coefficient at room temperature of 2.552E-10 m2N-1 correspond with medium-hard phases with an elastic-plastic behavior suitable for fatigue applications. Geothermal fluid modified was synthesized in the lab with NaCl/Na2SO4 to evaluate the corrosion resistance of the films in a standard three electrodes cell, characterizing a corrosion rate of 0.0008 and 0.001 mm*year-1 at 25 and 80°C respectively during 86.4 ks (24 h) of exposition; showing a resistive coating without corrosion products and with good response to the geothermal environment.


Sign in / Sign up

Export Citation Format

Share Document