scholarly journals UV/Ozone-Assisted Rapid Formation of High-Quality Tribological Self-Assembled Monolayer

Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 762
Author(s):  
Zhitao Fan ◽  
Chao Zhi ◽  
Lei Wu ◽  
Pei Zhang ◽  
Chengqiang Feng ◽  
...  

UV/ozone (UVO)-assisted formation of self-assembled monolayer (SAM) of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDS) was prepared on a glass surface. The effect of UVO exposure time on surface roughness and hydrophilicity was investigated through goniometer and atomic force microscope (AFM), and deposition time-dependent SAM quality was detected by AFM and X-ray photoelectron spectroscopy (XPS). The glass surface became smooth with UVO radiation after 10 min, and the hydrophilicity was also improved after the treatment. Confirmed by surface topography detection and chemical composition analysis, a high-quality SAM can be formed rapidly on glass with 10 min UVO treatment followed by 2 h deposition in PFDS solution. Excellent tribological performances of SAM coated with UVO treatment glass were demonstrated by friction and wear tests on AFM compared to film-deposited glass without UVO treatment and original glass. The study sheds a light on preparing high-quality lubrication and antiwear self-assembled films on the surface of engineering materials.

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Xinlei Gao ◽  
Li Wu ◽  
Jian Li ◽  
Wanzhen Gao

Preparation of a Cu (II) chelate of bis(salicylaldehyde)ethylenediamine was carried out directly in epoxidized rape oil via a water/oil microemulsion reactor. Detailed characterization of the friction of boundary lubrication produced by epoxidized rape oil with and without the Cu (II) chelate of bis(salicylaldehyde)ethylenediamine was performed in reciprocating sliding tests with a microtribometer. In the presence of a modification of the epoxidized rape oil with 2 wt % of the Cu (II) chelate of bis(salicylaldehyde)ethylenediamine, the friction coefficient decreased by 15%. The Cu (II) chelate of bis(salicylaldehyde)ethylenediamine served as the additive in the epoxidized rape oil and self-assembled on the surface of 100Cr6 steel. The self-assembled monolayer was detected with atomic force microscopy and scanning electron microscopy, and characterized with cyclic voltammetry. It was verified by energy dispersive spectroscopy and X-ray photoelectron spectroscopy analyses that steel/steel rubbing pairs underwent a selective transfer of organic substance and copper, as a result of lubrication with the modified lubricant. It indicated that the modification of epoxidized rape oil with Cu (II) chelate of bis(salicylaldehyde)ethylenediamine led to wear self-repair on the steel surface, with selective transfer of a film of organic substance and copper metal.


1999 ◽  
Vol 5 (6) ◽  
pp. 413-419 ◽  
Author(s):  
Bernardo R.A. Neves ◽  
Michael E. Salmon ◽  
Phillip E. Russell ◽  
E. Barry Troughton

Abstract: In this work, we show how field emission–scanning electron microscopy (FE-SEM) can be a useful tool for the study of self-assembled monolayer systems. We have carried out a comparative study using FE-SEM and atomic force microscopy (AFM) to assess the morphology and coverage of self-assembled monolayers (SAM) on different substrates. The results show that FE-SEM images present the same qualitative information obtained by AFM images when the SAM is deposited on a smooth substrate (e.g., mica). Further experiments with rough substrates (e.g., Al grains on glass) show that FE-SEM is capable of unambiguously identifying SAMs on any type of substrate, whereas AFM has significant difficulties in identifying SAMs on rough surfaces.


2003 ◽  
Vol 794 ◽  
Author(s):  
Mark Nowakowski ◽  
Jordana Bandaru ◽  
L.D. Bell ◽  
Shouleh Nikzad

ABSTRACTWe compare various wet chemical treatments, in preparing high-quality Ge (100) surfaces suitable for molecular beam epitaxy (MBE). Various surface treatments are explored such as UV-ozone treatment followed by exposure to chemical solutions such as de-ionized (DI) water, hydrofluoric acid (HF), or hydrochloric acid (HCl). Chemical treatments to remove the oxide are performed in a nitrogen environment to prevent further formation of surface oxide prior to surface analysis. Following chemical treatments, in situ reflection high-energy electron diffraction (RHEED) analysis is performed to observe the surface evolution as a function of temperature. In a separate chamber, we analyze each sample, before and after chemical treatment by x-ray photoelectron spectroscopy (XPS) to directly determine the oxide desorption following each chemical treatment. Our results of this comparative study, the effectiveness of each chemical treatment, and the stability of the passivated surface suggest that UV ozone cleaning, followed by 10% HCl is the best choice for removing most of the oxide. Furthermore, we present evidence of high quality epitaxial growth of SnxGe1−x on wafers prepared by our method.


2017 ◽  
Vol 121 (10) ◽  
pp. 5635-5641 ◽  
Author(s):  
Meagan B. Elinski ◽  
Benjamin D. Menard ◽  
Zhuotong Liu ◽  
James D. Batteas

RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24660-24664
Author(s):  
Yuki Araki ◽  
Taito Sekine ◽  
Ryongsok Chang ◽  
Tomohiro Hayashi ◽  
Hiroshi Onishi

Water molecules above a bioinert mixed-charged self-assembled monolayer (MC-SAM) surface are highly structured compared to those of bioactive SAM surfaces.


Sign in / Sign up

Export Citation Format

Share Document