scholarly journals Pharmaceutical Salts of Enrofloxacin with Organic Acids

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 646
Author(s):  
Hong Pang ◽  
Yu-Bin Sun ◽  
Jun-Wen Zhou ◽  
Meng-Juan Xie ◽  
Hao Lin ◽  
...  

Enrofloxacin is a poorly soluble antibacterial drug of the fluoroquinolones class used in veterinary medicine. The main purpose of this work was to investigate the structural and pharmaceutical properties of new enrofloxacin salts. Enrofloxacin anhydrate and its organic salts with tartaric acid, nicotinic acid and suberic acid formed as pure crystalline anhydrous solids. All the crystals were grown from a mixed solution by slow evaporation at room temperature. These products were then characterized by field-emission scanning electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry. Further, X-ray single crystal diffraction analysis was used to study the crystal structure. The intermolecular interactions and packing arrangements in the crystal structures were studied, and the solubility of these salts in water was determined using high-performance liquid chromatography. The results show that the new salts of enrofloxacin developed in this study exhibited excellent water solubility.

Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1008 ◽  
Author(s):  
Qilei Yang ◽  
Chang Zu ◽  
Wengang Li ◽  
Weiwei Wu ◽  
Yunlong Ge ◽  
...  

Paclitaxel (PTX) is a poor water-soluble antineoplastic drug with significant antitumor activity. However, its low bioavailability is a major obstacle for its biomedical applications. Thus, this experiment is designed to prepare PTX crystal powders through an antisolvent precipitation process using 1-hexyl-3-methylimidazolium bromide (HMImBr) as solvent and water as an antisolvent. The factors influencing saturation solubility of PTX crystal powders in water in water were optimized using a single-factor design. The optimum conditions for the antisolvent precipitation process were as follows: 50 mg/mL concentration of the PTX solution, 25 °C temperature, and 1:7 solvent-to-antisolvent ratio. The PTX crystal powders were characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, high-performance liquid chromatography–mass spectrometry, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Raman spectroscopy, solid-state nuclear magnetic resonance, and dissolution and oral bioavailability studies. Results showed that the chemical structure of PTX crystal powders were unchanged; however, precipitation of the crystalline structure changed. The dissolution test showed that the dissolution rate and solubility of PTX crystal powders were nearly 3.21-folds higher compared to raw PTX in water, and 1.27 times higher in artificial gastric juice. Meanwhile, the bioavailability of PTX crystal increased 10.88 times than raw PTX. These results suggested that PTX crystal powders might have potential value to become a new oral PTX formulation with high bioavailability.


Author(s):  
Mateusz Gołdyn ◽  
Anna Komasa ◽  
Mateusz Pawlaczyk ◽  
Aneta Lewandowska ◽  
Elżbieta Bartoszak-Adamska

The study of various forms of pharmaceutical substances with specific physicochemical properties suitable for putting them on the market is one of the elements of research in the pharmaceutical industry. A large proportion of active pharmaceutical ingredients (APIs) occur in the salt form. The use of an acidic coformer with a given structure and a suitable pK a value towards purine alkaloids containing a basic imidazole N atom can lead to salt formation. In this work, 2,6-dihydroxybenzoic acid (26DHBA) was used for cocrystallization of theobromine (TBR) and caffeine (CAF). Two novel salts, namely, theobrominium 2,6-dihydroxybenzoate, C7H9N4O2 +·C7H5O4 − (I), and caffeinium 2,6-dihydroxybenzoate, C8H11N4O2 +·C7H5O4 − (II), were synthesized. Both salts were obtained independently by slow evaporation from solution, by neat grinding and also by microwave-assisted slurry cocrystallization. Powder X-ray diffraction measurements proved the formation of the new substances. Single-crystal X-ray diffraction studies confirmed proton transfer between the given alkaloid and 26DHBA, and the formation of N—H...O hydrogen bonds in both I and II. Unlike the caffeine cations in II, the theobromine cations in I are paired by noncovalent N—H...O=C interactions and a cyclic array is observed. As expected, the two hydroxy groups in the 26DHBA anion in both salts are involved in two intramolecular O—H...O hydrogen bonds. C—H...O and π–π interactions further stabilize the crystal structures of both compounds. Steady-state UV–Vis spectroscopy showed changes in the water solubility of xanthines after ionizable complex formation. The obtained salts I and II were also characterized by theoretical calculations, Fourier-transform IR spectroscopy (FT–IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elemental analysis.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1910
Author(s):  
U. B. Rao Khandavilli ◽  
Leila Keshavarz ◽  
Eliška Skořepová ◽  
René R. E. Steendam ◽  
Patrick J. Frawley

The presence of impurities can drastically affect the efficacy and safety of pharmaceutical entities. p-Aminophenol (PAP) is one of the main impurities of paracetamol (PA) that can potentially show toxic effects such as maternal toxicity and nephrotoxicity. The removal of PAP from PA is challenging and difficult to achieve through regular crystallization approaches. In this regard, we report four new salts of PAP with salicylic acid (SA), oxalic acid (OX), l-tartaric acid (TA), and (1S)-(+)-10-camphorsulfonic acid (CSA). All the PAP salts were analyzed using single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The presence of minute amounts of PAP in paracetamol solids gives a dark color to the product that was difficult to remove through crystallization. In our study, we found that the addition of small quantities of the aforementioned acids helps to remove PAP from PA during the filtration and washings. This shows that salt formation could be used to efficiently remove challenging impurities.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 438 ◽  
Author(s):  
Joanna Szafraniec-Szczęsny ◽  
Agata Antosik-Rogóż ◽  
Justyna Knapik-Kowalczuk ◽  
Mateusz Kurek ◽  
Ewa Szefer ◽  
...  

The formation of solid dispersions with the amorphous drug dispersed in the polymeric matrix improves the dissolution characteristics of poorly soluble drugs. Although they provide an improved absorption after oral administration, the recrystallization, which can occur upon absorption of moisture or during solidification and other formulation stages, serves as a major challenge. This work aims at understanding the amorphization-recrystallization changes of bicalutamide. Amorphous solid dispersions with poly(vinylpyrrolidone-co-vinyl acetate) (PVP/VA) were obtained by either ball milling or spray drying. The applied processes led to drug amorphization as confirmed using X-ray diffraction and differential scanning calorimetry. Due to a high propensity towards mechanical activation, the changes of the crystal structure of physical blends of active pharmaceutical ingredient (API) and polymer upon pressure were also examined. The compression led to drug amorphization or transition from form I to form II polymorph, depending on the composition and applied force. The formation of hydrogen bonds confirmed using infrared spectroscopy and high miscibility of drug and polymer determined using non-isothermal dielectric measurements contributed to the high stability of amorphous solid dispersions. They exhibited improved wettability and dissolution enhanced by 2.5- to 11-fold in comparison with the crystalline drug. The drug remained amorphous upon compression when the content of PVP/VA in solid dispersions exceeded 20% or 33%, in the case of spray-dried and milled systems, respectively.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 23
Author(s):  
Chenxin Duan ◽  
Wenwen Liu ◽  
Yunwen Tao ◽  
Feifei Liang ◽  
Yanming Chen ◽  
...  

Palbociclib (PAL) is an effective anti-breast cancer drug, but its use has been partly restricted due to poor bioavailability (resulting from extremely low water solubility) and serious adverse reactions. In this study, two cocrystals of PAL with resorcinol (RES) or orcinol (ORC) were prepared by evaporation crystallization to enhance their solubility. The cocrystals were characterized by single crystal X-ray diffraction, Hirshfeld surface analysis, powder X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared and scanning electron microscopy. The intrinsic dissolution rates of the PAL cocrystals were determined in three different dissolution media (pH 1.0, pH 4.5 and pH 6.8), and both cocrystals showed improved dissolution rates at pH 1.0 and pH 6.8 in comparison to the parent drug. In addition, the cocrystals increased the solubility of PAL at pH 6.8 by 2–3 times and showed good stabilities in both the accelerated stability testing and stress testing. The PAL-RES cocrystal also exhibited an improved relative bioavailability (1.24 times) than PAL in vivo pharmacokinetics in rats. Moreover, the in vitro cytotoxicity assay of PAL-RES showed an increased IC50 value for normal cells, suggesting a better biosafety profile than PAL. Co-crystallization may represent a promising strategy for improving the physicochemical properties of PAL with better pharmacokinetics.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2124
Author(s):  
Daria Zielińska ◽  
Kinga Szentner ◽  
Agnieszka Waśkiewicz ◽  
Sławomir Borysiak

In the last few years, the scientific community around the world has devoted a lot of attention to the search for the best methods of obtaining nanocellulose. In this work, nanocellulose was obtained in enzymatic reactions with strictly defined dispersion and structural parameters in order to use it as a filler for polymers. The controlled enzymatic hydrolysis of the polysaccharide was carried out in the presence of cellulolytic enzymes from microscopic fungi—Trichoderma reesei and Aspergillus sp. It has been shown that the efficiency of bioconversion of cellulose material depends on the type of enzymes used. The use of a complex of cellulases obtained from a fungus of the genus Trichoderma turned out to be an effective method of obtaining cellulose of nanometric dimensions with a very low polydispersity. The effect of cellulose enzymatic reactions was assessed using the technique of high-performance liquid chromatography coupled with a refractometric detector, X-ray diffraction, dynamic light scattering and Fourier transform infrared spectroscopy. In the second stage, polypropylene composites with nanometric cellulose were obtained by extrusion and injection. It was found by means of X-ray diffraction, hot stage optical microscopy and differential scanning calorimetry that nanocellulose had a significant effect on the supermolecular structure, nucleation activity and the course of phase transitions of the obtained polymer nanocomposites. Moreover, the obtained nanocomposites are characterized by very good strength properties. This paper describes for the first time that the obtained cellulose nanofillers with defined parameters can be used for the production of polymer composites with a strictly defined polymorphic structure, which in turn may influence future decision making about obtaining materials with controllable properties, e.g., high flexibility, enabling the thermoforming process of packaging.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 739
Author(s):  
Lei Gao ◽  
Xian-Rui Zhang

Azilsartan is a novel angiotension II receptor blocker primarily used to treat high blood pressure. This is not a formulation-friendly molecule largely due to the inherent water-solubility pitfalls. In this paper, two novel cocrystals of azilsartan (AZ) were studied (AZ-BIP, AZ-BPE; BIP = 4,4′-bipyridine, BPE = trans-1,2-bis (4-pyridyl) ethylene) by solution crystallization. The structures of these two cocrystals were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), including the single-crystal structure determination of AZ-BIP and AZ-BPE. In the cocrystals AZ-BIP (2:1) and AZ-BPE (2:1), two AZ molecules and one coformer formed a sandwich structure through N-H…N interactions. These sandwich structures were extended into a one-dimensional structure through O-H…N hydrogen bonds. The equilibrium solubility study demonstrated that the AZ-BIP and AZ-BPE cocrystals both showed higher solubility than azilsartan in water.


IUCrJ ◽  
2018 ◽  
Vol 5 (6) ◽  
pp. 816-822 ◽  
Author(s):  
Rambabu Dandela ◽  
Srinu Tothadi ◽  
Udaya Kiran Marelli ◽  
Ashwini Nangia

The single-crystal X-ray structure of a 6-component organic-salt alloy (hexanary) of naftopidil (1) (an active pharmaceutical ingredient) with benzoic acid (2) and four different hydroxy-substituted benzoic acids, i.e. salicylic acid (3), 2,3-dihydroxybenzoic acid (4), 2,4-dihydroxybenzoic acid (5) and 2,6-dihydroxybenzoic acid (6), is reported. The hexanary assembly originates from the observation that the binary salts of naftopidil with the above acids are isostructural. In addition to the 6-component solid, we also describe five 5-component, ten 4-component, and ten 3-component organic-salt alloys of naftopidil (1) with carboxylic acids (2)–(6). These alloys were obtained from different combinations of the acids with the drug. The synthetic design of the multicomponent organic alloys is based on the rationale of geometrical factors (shape and size) and chemical interactions (hydrogen bonds). The common supramolecular synthon in all these crystal structures was the cyclic N+—H...O− and O—H...O hydrogen-bonded motif of R_2^2(9) graph set between the 2-hydroxyammonium group of naftopidil and the carboxylate anion. This ionic synthon is strong and robust, directing the isostructural assembly of naftopidil with up to five different carboxylic acids in the crystal structure together with the lower-level multicomponent adducts. Solution crystallization by slow evaporation provided the multicomponent organic salts and alloys which were characterized by a combination of single-crystal X-ray diffraction, powder X-ray diffraction, NMR and differential scanning calorimetry techniques.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 648
Author(s):  
Patrycja Garbacz ◽  
Dominik Paukszta ◽  
Artur Sikorski ◽  
Marek Wesolowski

The low water solubility of benzodiazepines seriously affects their bioavailability and, in consequence, their biological activity. Since co-crystallization has been found to be a promising way to modify undesirable properties in active pharmaceutical ingredients, the objective of this study was to prepare co-crystals of two benzodiazepines, chlordiazepoxide and lorazepam. Using different co-crystallization procedures, slurry evaporation and liquid-assisted grinding, co-crystals of chlordiazepoxide with p-aminobenzoic acid and lorazepam with nicotinamide were prepared for the first time. Confirmation that co-crystals were obtained was achieved through a comparison of the data acquired for both co-crystals using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) and Raman spectroscopy, with comparisons acquired for the physical mixtures of both benzodiazepines and coformers. The compatibility of PXRD patterns of both benzodiazepines co-crystals with those contained in the base Powder Diffraction File (PDF-4+) suggests that new crystal structures were indeed created under the co-crystallization procedure. Single-crystal X-ray diffraction revealed that a chlordiazepoxide co-crystal with p-aminobenzoic acid and a lorazepam co-crystal with nicotinamide crystallized in the monoclinic P21/n and P21/c space group, respectively, with one molecule of benzodiazepine and one of coformer in the asymmetric unit. FTIR and Raman spectroscopy corroborated that benzodiazepine and coformer are linked by a hydrogen bond without proton exchange. Furthermore, a DSC study revealed that single endothermic DSC peaks assigned to the melting of co-crystals differ slightly depending on the co-crystallization procedures and solvent used, as well as differing from those of starting components.


Sign in / Sign up

Export Citation Format

Share Document