scholarly journals Organic Salts of Pharmaceutical Impurity p-Aminophenol

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1910
Author(s):  
U. B. Rao Khandavilli ◽  
Leila Keshavarz ◽  
Eliška Skořepová ◽  
René R. E. Steendam ◽  
Patrick J. Frawley

The presence of impurities can drastically affect the efficacy and safety of pharmaceutical entities. p-Aminophenol (PAP) is one of the main impurities of paracetamol (PA) that can potentially show toxic effects such as maternal toxicity and nephrotoxicity. The removal of PAP from PA is challenging and difficult to achieve through regular crystallization approaches. In this regard, we report four new salts of PAP with salicylic acid (SA), oxalic acid (OX), l-tartaric acid (TA), and (1S)-(+)-10-camphorsulfonic acid (CSA). All the PAP salts were analyzed using single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The presence of minute amounts of PAP in paracetamol solids gives a dark color to the product that was difficult to remove through crystallization. In our study, we found that the addition of small quantities of the aforementioned acids helps to remove PAP from PA during the filtration and washings. This shows that salt formation could be used to efficiently remove challenging impurities.

2010 ◽  
Vol 98 (3) ◽  
pp. 478a
Author(s):  
Juan C. Gómez-Fernández ◽  
Angel Perez-Lara ◽  
Francisco J. Aranda ◽  
Alessio Ausili ◽  
Ana deGodos ◽  
...  

2010 ◽  
Vol 8 (4) ◽  
pp. 744-749 ◽  
Author(s):  
Vesna Nikolić ◽  
Dušica Ilić ◽  
Ljubiša Nikolić ◽  
Mihajlo Stanković ◽  
Milorad Cakić ◽  
...  

AbstractThe inclusion complex β-cyclodextrin:nifedipin was prepared in solid state by coprecipitation with 1:1 mol ratio. The structure of the obtained complex and nifedipin was characterized by use of X-ray diffraction (XR), infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and differential scanning calorimetry (DSC) methods. The photodegradation of nifedipin and the β-cyclodextrin:nifedipin inclusion complex in solid state was monitored under natural daylight by infrared spectroscopy, whereby the free nifedipin degraded four to five times faster than the complexed nifedipin. The photodegradation products of both free and complexed nifedipin, formed during irradiation at 350 nm (with corresponding energy flux of 18 W m−2) were monitored by liquid chromatography during various time intervals. The speed of formation of nitroso- and nitro-phenyl derivatives by nifedipin irradiation was significantly higher than those of complexed nifedipin irradiation, which indicates its increased photostability in the inclusion complex. The effect on this property is significant because it contributes both to the improvement of the therapeutic effect of nifedipin and to the safer application thereof.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2012 ◽  
Vol 8 ◽  
pp. 371-378 ◽  
Author(s):  
Katharina C Kress ◽  
Martin Kaller ◽  
Kirill V Axenov ◽  
Stefan Tussetschläger ◽  
Sabine Laschat

4-Cyano-1,1'-biphenyl derivatives bearing ω-hydroxyalkyl substituents were reacted with methyl 3-chloro-3-oxopropionate or cyanoacetic acid, giving liquid-crystalline linear malonates and cyanoacetates. These compounds formed monotropic nematic phases at 62 °C down to ambient temperature upon cooling from the isotropic liquid. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction (WAXS).


1990 ◽  
Vol 45 (7) ◽  
pp. 1084-1090 ◽  
Author(s):  
Klaus Praefcke ◽  
Bernd Kohne ◽  
Andreas Eckert ◽  
Joachim Hempel

Six S,S-dialkyl acetals 2a-f of inosose (1), tripodal in structure, have been synthesized, characterized and investigated by optical microscopy and differential scanning calorimetry (d.s.c.). The four S,S-acetals 2c-f with sufficiently long alkyl chains are thermotropic liquid crystalline; 2 e and 2 f are even dithermomesomorphic. Each of these four inosose derivatives 2c-f exhibits monotropically a most likely cubic mesophase (MI); in addition 2e and 2f show enantiotropically a hexagonal mesophase (Hx) with a non-covalent, supramolecular H-bridge architecture. Whereas the nature of the optically isotropic mesophase MI needs further clarification the stable high temperature mesophase Hx of 2 e and 2 f has been established by a miscibility test using a sugar S,S-dialkyl acetal also tripodal in structure and with a Hx phase proved by X-ray diffraction, but in contrast to 2 with an acyclic hydrophilic part. Similarities of structural features between the Hx-phases of 2e and 2f as well as of other thermotropic and lyotropic liquid crystal systems are discussed briefly.


2021 ◽  
Author(s):  
Alexander J. Stirk ◽  
Fabio E. S. Souza ◽  
Jenny Gerster ◽  
Fatemeh M. Mir ◽  
Avedis Karadeolian ◽  
...  

Crystallisations on both the academic and industrial scale often use large volumes of solvent. In order decrease the environmental impact of such processes, new techniques must be discovered that increase the efficiency of the solvents used. Introduced here is a process that combines repurposed industry standard hardware and aspects of mechanochemistry to produce a technique we call “Vapour Assisted Tumbling” (VAT). Pharmaceutical and well-known cocrystals and salts were formed by tumbling the coformers in an atmosphere of vaporised solvent, in this study, methanol (MeOH). This was done inside a custom built analogue of an industrial rotary cone dryer (RCD). It was found that a desired solid form could be obtained as monitored by powder X-ray diffraction and differential scanning calorimetry. By repurposing industrial RCDs, it is feasible that solid forms can be crystallised with both minimal and reusable/recyclable solvent – drastically lowering the environmental impact of such transformations.


Sign in / Sign up

Export Citation Format

Share Document