scholarly journals Synthesis and Visualization of a Novel Fluorescent-Tagged Polymeric Antiscalant during Gypsum Crystallization in Combination with Bisphosphonate Fluorophore

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 992 ◽  
Author(s):  
Maxim Oshchepkov ◽  
Vladimir Golovesov ◽  
Anastasia Ryabova ◽  
Svetlana Frolova ◽  
Sergey Tkachenko ◽  
...  

An attempt to reveal the mechanisms of scale inhibition with the use of two different fluorescent-tagged antiscalants at once is undertaken. To reach the goal, a novel 1,8-naphthalimide-tagged polyacrylate (PAA-F2) is synthesized and tested separately and jointly with 1,8-naphthalimide-tagged bisphosphonate (HEDP-F) as a gypsum scale inhibitor within the frames of NACE Standard TM0374-2007. Here, it is found that at a dosage of 10 mg·dm−3 it provides a much higher inhibition efficiency (96%) than HEDP-F (32%). A PAA-F2 and HEDP-F blend (1:1 mass) has an intermediate efficacy (66%) and exhibits no synergism relative to its individual components. The visualization of PAA-F2 revealed a paradoxical effect: an antiscalant causes modification of the CaSO4·2H2O crystals habit, but does not interact with them, forming particles of its own solid complex [Ca-PAA-F2]. This paradox is interpreted in terms of the “nano/microdust” concept, prioritizing the bulk heterogeneous nucleation step, while an ability of the scale inhibitor to block the nucleus growth at the next steps is proven to be of secondary importance. At the same time, HEDP-F does not change the gypsum crystals morphology, although this antiscalant is completely located on the surface of the scale phase. The PAA-F2 and HEDP-F blend revealed an accumulation of both antiscalants in their own [Ca-PAA-F2/Ca-HEDP-F] phase with some traces of HEDP-F and PAA-F2 on the CaSO4·2H2O crystals surface. Thus, the visualization of two different antiscalants separately and jointly applied to gypsum deposition demonstrates differences in phosphonic and polymeric inhibitors location, and a lack of causal relationship between antiscalant efficiency and scale particle habit modification. Finally, it is shown that the confocal microscopy of several fluorescent antiscalant blends is capable of providing unique information on their interrelationships during scale deposition.

RSC Advances ◽  
2016 ◽  
Vol 6 (95) ◽  
pp. 92943-92952 ◽  
Author(s):  
Henghui Huang ◽  
Qi Yao ◽  
Hualin Chen ◽  
Bailing Liu

In order to improve the scale inhibition efficiency of existing scale inhibitors for industrial water and to reduce the phosphorus pollution of water bodies, a new type of scale inhibitor with a hyper-branched structure has been developed.


2015 ◽  
Vol 814 ◽  
pp. 278-285
Author(s):  
Ming Zhu ◽  
Cheng Qiang Ren ◽  
Yuan Yuan Meng ◽  
Li Liu ◽  
Yun Ping Zheng

The deposition of BaSO4scale is always found in the oilfield. It is difficult to be removed. Therefore, it plays a negative role to the production. The effects of temperature and water chemistry on BaSO4scale have been investigated by using the conductivity method in this work. An environment-friendly copolymer was prepared to control the scaling of BaSO4. The copolymer was proved by static scale inhibition method, and weight-loss test that it has excellent scale inhibition performance and corrosion inhibition efficiency. Furthermore, FTIR spectra was used to prove that the scale inhibitor was polyepoxysuccinic acid (PESA).


2019 ◽  
Vol 19 (5) ◽  
pp. 1463-1472 ◽  
Author(s):  
Wenlin Zhang ◽  
Gongwei Li ◽  
Fei Jin ◽  
Yu Huo ◽  
Tengfei Sun ◽  
...  

Abstract A phosphorus-free scale inhibitor (ionic liquid–carboxylic acid copolymer) was successfully synthesized by the reaction of 1-sulfobutyl-3-vinylimidazolium hydrogen sulfate (SVIS) and acrylic acid (AA). The structure of the product was characterized by Fourier transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (1H NMR) and carbon-13 nuclear magnetic resonance (13C NMR). Then the scale inhibition efficiency of 1-sulfobutyl-3-vinylimidazolium hydrogen sulfate-acrylic acid (SVIS-AA) copolymer against CaCO3 and CaSO4 was determined. The results indicated that SVIS-AA copolymer showed better scale inhibition efficiency than poly (acrylic acid) (PAA). After that, the effects of temperature and Ca2+ concentration on the scale inhibition efficiency against CaCO3 were studied. Results showed that when the temperature reached 90 °C, the scale inhibition efficiency could still remain 91% at a concentration of 18 mg L−1. When the concentration of Ca2+ reached 1,200 mg L−1, the scale inhibition efficiency could remain 70% at a concentration of 20 mg L−1. At last, the effect of SVIS-AA copolymer on the morphologies of CaCO3 and CaSO4 scale was studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD).


2011 ◽  
Vol 311-313 ◽  
pp. 1097-1101
Author(s):  
Qiang Ke ◽  
Fa Shu Liang

In response to the serious barium / strontium – scale in oilfields, we simulated oilfield conditions and investigated the scale inhibition performance of several common scale inhibitors to barium and strontium, by following the protocol from Evaluation Methods of Anti-Scale Agent for Oilfield Use, Petroleum Gas Standards of People’s Republic of China SY/T 5673. The most effective scale inhibitor CD-1 was screened out. With CD-1 as barium / strontium scale inhibitor in the static anti-scale analytical experiments, the dependence of scale inhibition performance on scale inhibitor concentration, saltiness, temperature, time and the system pH was investigated. The application conditions of barium / strontium scale inhibitor in real petroleum and gas field was obtained. Under the optimized application conditions, the mixture scale inhibitor had better scale inhibition efficiency than CD-1 alone.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 802
Author(s):  
Yongsheng Zhou ◽  
Jie Wang ◽  
Yan Fang

Polyaspartic acid (PASP)-based green scale inhibitor has great potential application in water treatment. Here, we first synthesized PASP in ionic liquid. Then, an effective PASP-based green scale inhibitor was synthesized by ring-opening graft modification of PASP with both aspartic acid (ASP) and monoethanolamine (MEA). Its chemical composition was characterized by gel chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (1H NMR). Scale inhibition efficiency was measured by static scale inhibition tests. The results showed that the new PASP-based scale inhibitor has high scale inhibition to both CaCO3 and Ca3(PO4)2. When the concentration was increased to 2 mg/l, the inhibition efficiency of the new PASP-based scale inhibitor was 99% for CaCO3, while when the concentration was raised to only 4 mg/l, its inhibition efficiency increased to 100% for Ca3(PO4)2. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) were used to analyze the changes of crystal structure for CaCO3 and Ca3(PO4)2 after adding the new PASP-based scale inhibitor. The crystal size of CaCO3 and Ca3(PO4)2 became smaller and the crystal form became amorphous after adding the modified PASPs compared with adding pure PASP. Moreover, the modified PASP showed good biodegradation performance.


2014 ◽  
Vol 955-959 ◽  
pp. 2411-2414 ◽  
Author(s):  
Li Xiu Liu ◽  
Ai Jiang He

Scale inhibitor is a medicament which has the properties of dispersing insoluble inorganic salt in water, and preventing or obstructing sediment and scaling of insoluble inorganic salt on metal surface. Research on the mechanism of scale inhibition can promote using and developing scale inhibitors. In this paper, the traditional macroscopic mechanism of scale inhibition was firstly analyzed, and it was also emphasized to introduce the research progress of quantization simulation technique on the mechanism of scale inhibition, and it was also suggested to combine the microstructure of scale crystal with quantization simulation technique to have a further study on the mechanism of scale inhibition.


2014 ◽  
Author(s):  
Tao Chen ◽  
Ping Chen ◽  
Harry Montgomerie ◽  
Thomas Hagen ◽  
Ronald Benvie ◽  
...  

Abstract Turbulent flow, especially around chokes, downhole safety valves and inflow control devices, favors scale deposition potentially leading to severe loss of production. Recently, scale formation under turbulent conditions has been studied and progressed, focused on the bulk precipitation (SPE164070) and a small bore valve loop test (SPE 155428). However, bulk precipitation is not fully representative the surface deposition in the fields and the Reynolds number of modified loop is unknown. The relationship between a measured Reynolds number and surface deposition up until this study has not been addressed. A newly developed test methodology with rotating cylinder has been applied to generate high shear rate and evaluate surface deposition with Reynolds numbers up to ~41000. The relationship between Reynolds number and surface deposition is addressed. Using this highly representable test method for BaSO4 scale deposition, several different generic types of inhibitor chemistries, including polymers and phosphonates, were assessed under different levels of turbulence to evaluate their performance on surface deposition. The results showed it is not always true that higher turbulence results in higher dose of inhibitor being required to control scale. It is inhibitor chemistry and mechanisms dependent. The scale inhibitorscan be classified as three types when evaluating the trend of mass deposition versus Reynolds number and the morphology of the crystals deposited on the metal surface. ➢ Type 1: Crytal growth inhibitors. The mass of surface deposition increases with the increase of turbulence, along with smaller crystals.➢ Type 2: Dispersion and crystal growth inhibitor. The higher the turbulence, the less mass deposition, along with smaller crystals.➢ Type 3: Dispersion scale inhibitors. The higher the turbulence, the less mass deposition. The size of the crystals has no major change. This paper gives a comprehensive study of the effect of flow condition on the scale surface deposition and inhibition mechanisms. In addition, it details how this methodology and new environmentally acceptable inhibitor chemistry can be coupled to develop a chemical technology toolbox that also includes techniques for advanced scale inhibitor analysis and improved scale inhibitor retention, to design optimum scale squeeze packages for the harsh scaling conditions associated with turbulent flow conditions.


2014 ◽  
Author(s):  
D.. Patterson ◽  
W.. Williams ◽  
M.. Jordan ◽  
R.. Douglas

Abstract The injection of seawater into oil-bearing reservoirs in order to maintain reservoir pressure and improve secondary recovery is a well-established, mature operation. Moreover, the degree of risk posed by deposition of mineral scales (carbonate/sulphate) to the injection and production wells during such operations has been much studied. The current deep-water subsea developments offshore West Africa and Brazil have brought into sharp focus the need to manage scale in an effective way. In a deepwater West African field the relatively small number of high-cost, highly productive wells, coupled with a high barium sulphate scaling tendency upon breakthrough of injection seawater meant not only was effective scale management critical to achieve high hydrocarbon recovery, but even wells at low water cuts have proven to be at sufficient risk to require early squeeze application. To provide effective scale control in these wells at low water cuts, phosphonate-based inhibitors were applied as part of the acid perforation wash and overflush stages prior to frac packing operations. The deployment of this inhibitor proved effective in controlling barium sulphate scale formation during initial water production eliminating the need to scale squeeze the wells at low water cuts (<10% BS&W). To increase the volumes of scale inhibitor being deployed in the pre-production treatments and so extend the treatment lifetimes scale inhibitor was also added to the frac gel used to carry the frac sand. This paper outlines the selection methods for the inhibitor chemical for application in frac fluids in terms of rheology, retention/release, formation damage and presents the chemical returns profile from the 5 wells treated (some treatments lasting > 300 days) along with monitoring methods utilized to confirm scale control in the wells treated. Many similar fields are currently being developed in the Campos basin, Gulf of Mexico, and West Africa, and this paper is a good example of best-practice sharing from another oil basin.


Sign in / Sign up

Export Citation Format

Share Document