scholarly journals Broadband Detection Based on 2D Bi2Se3/ZnO Nanowire Heterojunction

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 169
Author(s):  
Zhi Zeng ◽  
Dongbo Wang ◽  
Jinzhong Wang ◽  
Shujie Jiao ◽  
Donghao Liu ◽  
...  

The investigation of photodetectors with broadband response and high responsivity is essential. Zinc Oxide (ZnO) nanowire has the potential of application in photodetectors, owing to the great optoelectrical property and good stability in the atmosphere. However, due to a large number of nonradiative centers at interface and the capture of surface state electrons, the photocurrent of ZnO based photodetectors is still low. In this work, 2D Bi2Se3/ZnO NWAs heterojunction with type-I band alignment is established. This heterojunction device shows not only an enhanced photoresponsivity of 0.15 A/W at 377 nm three times of the bare ZnO nanowire (0.046 A/W), but also a broadband photoresponse from UV to near infrared region has been achieved. These results indicate that the Bi2Se3/ZnO NWAs type-I heterojunction is an ideal photodetector in broadband detection.


2018 ◽  
Vol 7 (1) ◽  
pp. 35-41
Author(s):  
Garima Bhardwaj ◽  
Sandhya K. ◽  
Richa Dolia ◽  
M. Abu-Samak ◽  
Shalendra Kumar ◽  
...  

In this paper, we have configured InGaAsP QW (quantum well) heterostructures of type-I and type-II band alignments and simulated their optical characteristics by solving 6 x 6 Kohn-Luttinger Hamiltonian Matrix. According to the simulation results, the InGaAsP QW heterostructure of type-I band alignment has been found to show peak optical gain (TE mode) of the order of~3600/cm at the transition wavelength~1.40 µm; while of type-II band alignment has achieved the peak gain (TE mode) of the order of~7800/cm at the wavelength of~1.85 µm (eye safe region). Thus, both of the heterostructures can be utilized in designing of opto-or photonic devices for the emission of radiations in NIR (near infrared region) but form the high gain point of view, the InGaAsP of type-II band alignment can be more preferred.



2018 ◽  
Vol 768 ◽  
pp. 187-192
Author(s):  
Jian Wen ◽  
Xiu Li Fu ◽  
Zhao Xian Liu ◽  
Zhi Jian Peng

In this work, the photoelectric properties of ZnO1-x/graphene heterostructures were investigated. Such ZnO1-x/graphene heterostructures were constructed from non-stoichiometric zinc oxide (ZnO1-x) film and graphene by first depositing ZnO1-x layer through radio frequency magnetron sputtering onto silicon wafers with SiO2 layer and then transferring graphene via a wet method. It was revealed that such heterostructures could have improved photoelectric properties. Compared with ZnO1-x films, the absorbance of the ZnO1-x/graphene heterostructures in visible and near-infrared region was enhanced; and due to the high conductivity of graphene, the photocurrent was significantly enhanced both in dark and under irradiation of a 700 nm light. By calculating the absolute current gain, it was revealed that the fabricated ZnO1-x/graphene heterostructures would have a higher current gain. Thus, such ZnO1-x/graphene heterostructures would be promisingly applied in visible light to near-infrared detection devices.





2021 ◽  
Author(s):  
Abhineet Verma ◽  
Sk Saddam Hossain ◽  
Sailaja S Sunkari ◽  
Joseph Reibenspies ◽  
Satyen Saha

Lanthanides (LnIII) are well known for their characteristic emission in the Near-Infrared Region (NIR). However, direct excitation of lanthanides is not feasible as described by Laporte’s parity selection rule. Here,...





Author(s):  
Cong Shen ◽  
Yan Qing Zhu ◽  
Zixiao Li ◽  
Jingling Li ◽  
Hong Tao ◽  
...  

InP quantum dots (QDs) are considered as the most promising alternative to Cd-based QDs with the lower toxicity and emission spectrum tunability ranging from visible to near-infrared region. Although high-quality...



LWT ◽  
2021 ◽  
Vol 143 ◽  
pp. 111092
Author(s):  
Jose Marcelino S. Netto ◽  
Fernanda A. Honorato ◽  
Patrícia M. Azoubel ◽  
Louise E. Kurozawa ◽  
Douglas F. Barbin


Nanoscale ◽  
2020 ◽  
Vol 12 (41) ◽  
pp. 21459-21459
Author(s):  
Charlotte Marshall

Retraction of ‘Water-soluble multidentate polymers compactly coating Ag2S quantum dots with minimized hydrodynamic size and bright emission tunable from red to second near-infrared region’ by Rijun Gui et al., Nanoscale, 2014, 6, 5467–5473, DOI: 10.1039/C4NR00282B.



Sign in / Sign up

Export Citation Format

Share Document