scholarly journals Neutron and XRD Single-Crystal Diffraction Study and Vibrational Properties of Whitlockite, the Natural Counterpart of Synthetic Tricalcium Phosphate

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 225
Author(s):  
Francesco Capitelli ◽  
Ferdinando Bosi ◽  
Silvia C. Capelli ◽  
Francesco Radica ◽  
Giancarlo Della Ventura

A crystal chemical investigation of a natural specimen of whitlockite, ideally Ca9Mg(PO4)6[PO3(OH)], from Palermo Mine (USA), was achieved by means of a combination of electron microprobe analysis (EMPA) in WDS mode, single-crystal neutron diffraction probe (NDP) and single-crystal X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The crystal-chemical characterization resulted in the empirical formula (Ca8.682Na0.274Sr0.045)Σ9.000(Ca0.034□0.996)Σ1.000(Mg0.533Fe2+0.342Mn2+0.062Al0.046)Σ0.983(P1.006O4)6[PO3(OH0.968F0.032)Σ1.000]. Crystal-structure refinement, in the space group R3c, converged to R1 = 7.12% using 3273 unique reflections from NDP data and to R1 = 2.43% using 2687 unique reflections from XRD data. Unit cell parameters from NDP are a = 10.357(3) Å, c = 37.095(15) Å and V = 3446(2) Å3, and from XRD, the parameters are a = 10.3685(4) Å, c = 37.1444(13) Å and V = 3458.2(3) Å3. NDP results allowed a deeper definition of the hydrogen-bond system and its relation with the structural unit [PO3(OH)]. The FTIR spectrum is very similar to that of synthetic tricalcium phosphate Ca3(PO4)2 and displays minor band shifts due to slightly different P-O bond lengths and to the presence of additional elements in the structure. A comparison between whitlockite, isotypic phases from the largest merrillite group, and its synthetic counterpart Ca3(PO4)2 is provided, based on the XRD/NDP and FTIR results.

Author(s):  
Gohil S. Thakur ◽  
Hans Reuter ◽  
Claudia Felser ◽  
Martin Jansen

The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.


2017 ◽  
Vol 81 (2) ◽  
pp. 339-354 ◽  
Author(s):  
E. Schingaro ◽  
E. Mesto ◽  
M. Lacalamita ◽  
F. Scordari ◽  
E. Kaneva ◽  
...  

AbstractA crystal chemical study of narsarsukite from the Murun alkaline massif, Russia has been carried out combining single-crystal X-ray diffraction, electron microprobe analyses, micro-Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The narsarsukite single crystals are tetragonal (space group I4/m) with unit-cell parameters: 10.7140(1) ≤ a ≤ 10.7183(2) Å and 7.9478(1) ≤ c ≤ 7.9511(1) Å. The XPS analysis showed that Fe occurs in the mineral as Fe3+, whereas the FTIR spectrum showed that the sample studied is anhydrous. The average crystal chemical formula of the Murun narsarsukite is: Na2.04K0.01(V0.015+Ti0.74Zr0.01Al0.01Fe0.223+Mg0.01)1.00Si4.00(O10.74F0.23OH0.03)11.00. Structural disorder at octahedral and interstitial sites was modelled and also discussed in consideration of the main substitutional mechanism Ti4+ + O2– ↔ Fe3+ + (F–, OH–) active in the structure of the mineral.


2005 ◽  
Vol 60 (5) ◽  
pp. 491-494 ◽  
Author(s):  
Birgit Heying ◽  
Rolf-Dieter Hoffmann ◽  
Rainer Pöttgen

The technologically important S-phase precipitate MgCuAl2 has been synthesized from the elements in a sealed tantalum tube in an induction furnace. The aluminide was investigated by powder and single crystal X-ray diffraction methods: Cmcm, a = 401.19(9), b = 926.5(2), c = 712.4(1) pm, wR2 = 0.0425, 234 F2 values, and 16 variable parameters. The new crystallographic data fully confirm the original work by Perlitz and Westgren [Ark. Kemi, Mineral. Geol. 16, 1 (1943)], but the present structure refinement has led to a much higher precision. The crystal chemical peculiarities of MgCuAl2 are briefly discussed.


2017 ◽  
Vol 81 (1) ◽  
pp. 155-166 ◽  
Author(s):  
Hans-Peter Bojar ◽  
Franz Walter ◽  
Judith Baumgartner

AbstractThe new mineral joanneumite was found at Pabellón de Pica Mountain, Iquique Province, Tarapacá Region, Chile, where it occurs as violet microcrystalline aggregates up to 2 mm in size in small cracks in a gabbroic rock, which is covered by a guano deposit. Associated minerals are salammoniac, dittmarite, möhnite and gypsum. Joanneumite is non-fluorescent and the Mohs hardness is 1. The calculated density is 2.020 g cm–3. The infrared spectrum of joanneumite shows the frequencies of NH3 and isocyanurate groups and the absence of absorptions of H2O molecules and OH– ions. The chemical composition (electron microprobe data, the hydrogen was calculated from the structural formula, wt.%) is C 20.33, N 31.11, O 28.34, Cu 17.27, Zn 0.24, H 2.82, total 100.11. The empirical formula is Cu0.96Zn0.01N7.84C5.98O6.25H9.96 and the idealized formula is CuN8C6O6H10 with the structural formula Cu(C3N3O3H2)2(NH3)2. Due to the lack of suitable single crystals the synthetic analogue of joanneumite was prepared for the single-crystal structure refinement. The crystal structure was solved and refined to R = 0.025 based upon 1166 unique reflections with I > 2σ (I). Joanneumite is triclinic, space group P1̄, a = 4.982(1), b = 6.896(1), c = 9.115(2) Å, α = 90.53(3), β = 97.85(3), γ = 110.08(3)°, V = 290.8(1) Å3, Z = 1 obtained from single-crystal data at 100 K, which are in good agreement with cell parameters from powder diffraction data of joanneumite at 293 K: a = 5.042(1), b = 6.997(1), c = 9.099(2) Å, α = 90.05(3), β = 98.11(2), γ = 110.95(3)° and V = 296.3(1) Å3. The eight strongest lines of the powder X-ray diffraction pattern are [d, Å (I,%) (hkl)] 6.52 (68) (010), 5.15 (47) (011), 4.66 (21) (100, 110), 4.35 (9) (1̄11), 3.29 (6) (1̄20), 3.22 (7) (1̄1̄1), 3.140 (100) (1̄21), 2.074 (7) (1̄32). The crystal structure of joanneumite is identical with the structure of synthetic bis(isocyanurato) diamminecopper(II).


Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 343 ◽  
Author(s):  
Sytle M. Antao ◽  
Laura A. Cruickshank ◽  
Kaveer S. Hazrah

The crystal chemistry of two hausmannite samples from the Kalahari manganese field (KMF), South Africa, was studied using electron-probe microanalysis (EPMA), single-crystal X-ray diffraction (SCXRD) for sample-a, and high-resolution powder X-ray diffraction (HRPXRD) for sample-b, and a synthetic Mn3O4 (97% purity) sample-c as a reference point. Hausmannite samples from the KMF were reported to be either magnetic or non-magnetic with a general formula AB2O4. The EPMA composition for sample-a is [Mn2+0.88Mg2+0.11Fe2+0.01]Σ1.00Mn3+2.00O4 compared to Mn2+Mn3+2O4 obtained by refinement. The single-crystal structure refinement in the tetragonal space group I41/amd gave R1 = 0.0215 for 669 independently observed reflections. The unit-cell parameters are a = b = 5.7556(6), c = 9.443(1) Å, and V = 312.80(7) Å3. The Jahn–Teller elongated Mn3+O6 octahedron of the M site consists of M–O × 4 = 1.9272(5), M–O × 2 = 2.2843(7), and an average <M–O>[6] = 2.0462(2) Å, whereas the Mn2+O4 tetrahedron of the T site has T–O × 4 = 2.0367(8) Å. The site occupancy factors (sof) are M(sof) = 1.0 Mn (fixed, thereafter) and T(sof) = 1.0008(2) Mn. The EPMA composition for sample-b is [Mn0.99Mg0.01](Mn1.52Fe0.48)O4. The Rietveld refinement gave R (F2) = 0.0368. The unit-cell parameters are a = b = 5.78144(1), c = 9.38346(3) Å, and V = 313.642(1) Å3. The octahedron has M–O × 4 = 1.9364(3), M–O × 2 = 2.2595(6), and average <M–O>[6] = 2.0441(2) Å, whereas T–O × 4 = 2.0438(5) Å. The refinement gave T(sof) = 0.820(9) Mn2+ + 0.180(9) Fe2+ and M(sof) = 0.940(5) Mn3+ + 0.060(5) Fe3+. Samples-a and -b are normal spinels with different amounts of substitutions at the M and T sites. The Jahn–Teller elongation, Δ(M–O), is smaller in sample-b because atom substitutions relieve strain compared to pure Mn3O4.


Author(s):  
William G. Mumme ◽  
Ian E. Grey ◽  
Robert W. Gable ◽  
Colin M. MacRae ◽  
Tom Loomis

A single-crystal structure analysis of sincosite from the South Rasmussen Ridge mine, Idaho, USA has confirmed it as the first natural occurrence with triclinic symmetry. Previous work on the mineral, based on limited electron diffraction and single crystal studies, together with the indexing of powder X-ray diffraction data, have described it as having tetragonal symmetry; although hydrothermally prepared synthetic sincosite is triclinic. The unit cell parameters are a = 6.3531(12), b = 6.3567(14), c = 6.6050(18) Å, α = 106.995(22), β = 94.115(19), γ = 90.006(16)°,and the space group is P1. The crystal structure was refined to wR obs = 0.11 for 783 reflections with I > σ(I). The structure refinement and electron probe micro analysis both confirm the composition as Ca(VO) 2(PO4)2·4H 2O.


2017 ◽  
Vol 81 (4) ◽  
pp. 917-922
Author(s):  
Peter Elliott

AbstractThe crystal structure of the copper aluminium phosphate mineral sieleckiite, Cu3Al4(PO4)2 (OH)12·2H2O, from the Mt Oxide copper mine, Queensland, Australia was solved from single-crystal X-ray diffraction data utilizing synchrotron radiation. Sieleckiite has monoclinic rather than triclinic symmetry as previously reported and is space group C2/m with unit-cell parameters a = 11.711(2), b = 6.9233(14), c = 9.828(2) Å, β = 92.88(3)°, V = 795.8(3) Å3and Z = 2. The crystal structure, which has been refined to R1 = 0.0456 on the basis of 1186 unique reflections with Fo > 4σF, is a framework of corner-, edge- and face- sharing Cu and Al octahedra and PO4 tetrahedra.


2012 ◽  
Vol 76 (3) ◽  
pp. 443-453 ◽  
Author(s):  
J. Plášil ◽  
K. Fejfarová ◽  
R. Skála ◽  
R. Škoda ◽  
N. Meisser ◽  
...  

AbstractTwo crystals of the uranyl carbonate mineral grimselite, ideally K3Na[(UO2)(CO3)3](H2O), from Jáchymov in the Czech Republic were studied by single-crystal X-ray diffraction and electron-probe microanalysis. One crystal has considerably more Na than the ideal chemical composition due to substitution of Na into KO8 polyhedra; the composition of the other crystal is nearer to ideal, and similar to synthetic grimselite. The presence of Na atoms in KO8 polyhedra, which are located in channels in the crystal structure, reduces their volume, and as a result the unit-cell volume also decreases. Structure refinement shows that the formula for the sample with the anomalously high Na content is (K2.43Na0.57)Σ3.00Na[(UO2)(CO3)3](H2O). The unit-cell parameters, refined in space group P2c, are a = 9.2507(1), c = 8.1788(1) Å, V = 606.14(3) Å3 and Z = 2. The crystal structure was refined to R1 = 0.0082 and wR1 = 0.0185 with a GOF = 1.33, based on 626 observed diffraction peaks [Iobs>3σ(I)].


2000 ◽  
Vol 294-296 ◽  
pp. 327-330 ◽  
Author(s):  
W. Sun ◽  
F.J. Lincoln ◽  
K. Sugiyama ◽  
K. Hiraga

Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo &gt; 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


Sign in / Sign up

Export Citation Format

Share Document