scholarly journals Cadmium Telluride Nanocomposite Films Formation from Thermal Decomposition of Cadmium Carboxylate Precursor and Their Photoluminescence Shift from Green to Red

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 253
Author(s):  
Rocco Carcione ◽  
Francesca Limosani ◽  
Francesco Antolini

This study focuses on the investigation of a CdTe quantum dots (QDs) formation from a cadmium-carboxylate precursor, such as cadmium isostearate (Cd(ISA)2), to produce CdTe QDs with tunable photoluminescent (PL) properties. The CdTe QDs are obtained by the thermal decomposition of precursors directly in the polymer matrix (in situ method) or in solution and then encapsulated in the polymer matrix (ex situ method). In both approaches, the time course of the CdTe QDs formation is followed by means of optical absorption and PL spectroscopies focusing on viable emission in the spectral interval between 520 and 630 nm. In the polymeric matrix, the QDs formation is slower than in solution and the PL bands have a higher full width at half maximum (FWHM). These results can be explained on the basis of the limited mobility of atoms and QDs in a solid matrix with respect to the solution, inducing an inhomogeneous growth and the presence of surface defects. These achievements open the way to the exploitation of Cd(ISA)2 as suitable precursor for direct laser patterning (DPL) for the manufacturing of optoelectronic devices.

Author(s):  
Iñigo Díez-García ◽  
Arantxa Eceiza ◽  
Agnieszka Tercjak

This research work was focused on the incorporation of TiO2 nanoparticles into synthesized solvent-free waterborne poly(urethane-urea) based on hydrophilic poly(ethylene oxide) (PU0) in order to improve both mechanical properties and self-healing effectiveness of polymer matrix. The incorporation of TiO2 nanoparticles resulted in a successful enhancement of mechanical properties of nanocomposite films if compare to PU0. Simultaneously, obtained nanocomposite films did not only maintain the self-healing ability of PU0 film, measured by means of mechanical properties after successive cutting/recovery cycles, but also showed higher self-healing efficiency than the PU0 film. Moreover, well-dispersed TiO2 nanoparticles, visualized by atomic force microscopy (AFM), kept their electrical conductive properties when embedded in the PU0 matrix, as was confirmed by electrostatic force microscopy (EFM). This research work described a simple and industrially appealing way to control the dispersion of commercially available TiO2 nanoparticles in waterborne poly(urethane-urea) for the designing of inorganic/organic hybrid nanocomposites with enhanced mechanical properties and self-healing efficiency in which TiO2 nanoparticles preserved their conductive properties within the polymer matrix.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1209 ◽  
Author(s):  
Iñigo Díez-García ◽  
Arantxa Eceiza ◽  
Agnieszka Tercjak

This research work was focused on the incorporation of TiO2 nanoparticles into synthesized solvent-free waterborne poly(urethane-urea) (WPUU) based on hydrophilic poly(ethylene oxide) (PU0) in order to improve both the mechanical properties and self-healing effectiveness of a polymer matrix. The incorporation of TiO2 nanoparticles resulted in a successful enhancement of the mechanical properties of nanocomposite films when compared to PU0. Simultaneously, the obtained nanocomposite films did not only maintain the self-healing ability of the PU0 film, measured by means of mechanical properties after successive cutting/recovery cycles, but they also showed a higher self-healing efficiency than the PU0 film. Moreover, the well-dispersed TiO2 nanoparticles, visualized by atomic force microscopy (AFM), kept their conductive properties when embedded in the PU0 matrix, as was confirmed by electrostatic force microscopy (EFM). This research work described a simple and industrially appealing way to control the dispersion of commercially available TiO2 nanoparticles in waterborne poly(urethane-urea) for the designing of inorganic/organic hybrid nanocomposites with enhanced mechanical properties and self-healing efficiency, in which TiO2 nanoparticles preserved their conductive properties within the polymer matrix.


2012 ◽  
Vol 19 (2) ◽  
pp. 195-197 ◽  
Author(s):  
Gianfranco Carotenuto ◽  
Mariano Palomba ◽  
Luigi Nicolais

AbstractLightfast color filters (intensively and brightly colored) can be easily produced by dying optical plastics with the surface plasmon resonance (SPR) of metal nanoparticles such as silver and gold. Here, color filters based on silver nanoparticles embedded in amorphous polystyrene have been prepared by dissolving and thermally decomposing (1,5-cyclooctadiene)(hexafluoro-acetylacetonate)silver(I) in amorphous polystyrene. The metal precursor quickly decomposes (10 s, at 180°C), leading to silver atoms that clusterize and produce a non-aggregated dispersion of silver particles in the polymer matrix. The intensity of the yellow coloration due to the SPR of nanoscopic silver can be widely tuned simply by varying the cluster numerical density in the polymer matrix that depends on the silver precursor concentration. The obtained nanocomposite films have been characterized by X-ray power diffraction, transmission electron microscopy, and UV-Vis spectroscopy.


2012 ◽  
Vol 585 ◽  
pp. 134-138 ◽  
Author(s):  
Alisha Goyal ◽  
Jyoti Rozra ◽  
Isha Saini ◽  
Pawan K. Sharma ◽  
Annu Sharma

Nanocomposite films of Poly (methylmethacrylate) with different concentration of silver nanoparticles were prepared by ex-situ method. Firstly, silver nanoparticles were obtained by reducing the aqueous solution of silver nitrate with sodium borohydride then Ag-PMMA films were prepared by mixing colloidal solution of silver nanoparticles with solution of polymer. Thin solid films were structurally characterized using UV-VIS spectroscopy and TEM. The appearance of surface plasmon resonance peak, characteristic of silver nanoparticles at 420 nm in UV-VIS absorption spectra of Ag-PMMA films confirms the formation of Ag-PMMA nanocomposite. TEM showed Ag nanoparticles of average size 8 nm embedded in PMMA matrix. Analysis of absorption and reflection data indicates towards the reduction in optical band gap and increase in refractive index of the resulting nanocomposite. The synthesized Ag-PMMA nanocomposite has been found to be more conducting than PMMA as ascertained using I-V studies. The decrease in band gap and increase in conductivity can be correlated due to the formation of localized electronic states in PMMA matrix due to insertion of Ag nanoparticles. The PMMA thin films with dispersed silver nanoparticles may be useful for nanophotonic devices.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pablo Cayado ◽  
Hannes Rijckaert ◽  
Els Bruneel ◽  
Manuela Erbe ◽  
Jens Hänisch ◽  
...  

Abstract For the first time, GdBa2Cu3O7−x nanocomposites were prepared by chemical solution deposition following the ex-situ approach. In particular, ~ 220 nm GdBa2Cu3O7−x-HfO2 (GdBCO-HfO2) nanocomposite films were fabricated starting from a colloidal solution of 5 mol% HfO2 nanoparticles. Hereby, one of the main challenges is to avoid the accumulation of the nanoparticles at the substrate interface during the pyrolysis, which would later prevent the epitaxial nucleation of the GdBCO grains. Therefore, the effect of pyrolysis processing parameters such as heating ramp and temperature on the homogeneity of the nanoparticle distribution has been investigated. By increasing the heating ramp to 300 °C/h and decreasing the final temperature to 300 °C, a more homogenous nanoparticle distribution was achieved. This translates into improved superconducting properties of the grown films reaching critical temperatures (Tc) of 94.5 K and self-field critical current densities ($${J}_{\mathrm{c}}^{\mathrm{sf}}$$ J c sf ) at 77 K of 2.1 MA/cm2 with respect to films pyrolyzed at higher temperatures or lower heating ramps.


Sign in / Sign up

Export Citation Format

Share Document