scholarly journals Electronic Unit for the Management of Energy Harvesting of Different Piezo Generators

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 640
Author(s):  
Sergio Rincón-Murcia ◽  
Edwin Forero-Garcia ◽  
Maria Josefina Torres ◽  
Jesus Ramirez-Pastran

The constant advance in the development of piezoelectric materials for energy harvesting has demanded new implementations in the electronics field. The piezoelectric property of these materials has been considered an energy source for low-power devices; nevertheless, the units that provide energy are usually adapted to just one piezoelectric device. This aspect complicates the process, taking into account the amount of time needed for an energy harvest; therefore, this research inquired at first into the adequate piezoelectric materials for carrying out the current study. Afterwards, an energy management unit was designed, considering the connection between some modules and allowing the sourcing of an electrolytic cell for producing hydrogen and, in turn, energy. The results evidence a decrease in time charging of the energy storage unit, which allows a cell’s supply of energy in shorter time intervals, its design efficiency being about 90%, in such a way that the energy harvested through the piezoelectric devices can be used in a better manner.

Author(s):  
Alessandro Massaro

After a brief introduction of piezoelectric materials, this chapter focuses on the characterization of vibrating freestanding piezoelectric AlN devices forced by different external forces acting simultaneously. The analyzed vibrating forces are applied mainly to piezoelectric freestanding structures stimulated by irregular vibration phenomena. Particular kinds of theoretical noise signals are commented. The goal of the chapter is to analyze the effect of the noise in order to model the chaotic vibrating system and to predict the output current signals. Moreover, the author also shows a possible alternative way to detect different vibrating force directions in the three dimensional space by means of curved piezoelectric layouts.


Author(s):  
A. Majeed

Recent advancements in wireless technology and low power electronics such as micro electrome-chanical systems (MEMS), have created a surge of technical innovations in the eld of energy har-vesting. Piezoelectric materials, which operate on vibrations surrounding the system have becomehighly useful in terms of energy harvesting. Piezoelectricity is the ability to transform mechanicalstrain energy, mostly vibrations, to electrical energy, which can be used to power devices. This paperwill focus on energy harvesting by piezoelectricity and how it can be incorporated into various lowpower devices and explain the ability of piezoelectric materials to function as self-charging devicesthat can continuously supply power to a device and will not require any battery for future processes.


2018 ◽  
Vol 29 (10) ◽  
pp. 2105-2121 ◽  
Author(s):  
Mohammed Salim ◽  
Dhia Salim ◽  
Davannendran Chandran ◽  
Hakim S Aljibori ◽  
A Sh Kherbeet

The piezoelectric devices, based on micro–nano electromechanical systems, are well known nowadays due to their small features, ability for integration with the integrated circuit in a single platform, robust, and easily fabricated in bulk. The enhanced performance of piezoelectric systems, which is soft, flexible, and stretchable made them have unique opportunities to be used in bio-integrated applications as nanodevices for energy harvesting, sensing, actuation, and cell stimulation. The selection of optimized configurations depends on thin geometries, neutral mechanical plane construction, and controlled buckling, while inorganic piezoelectric materials are preferred for interfaces with human bodies. The key considerations in designs, the analytical derivations for voltage and displacement, and the effect of the voltmeter resistance on the voltage measurements are presented. Devices for energy harvesting from natural motions of internal organs, sensors, and actuators for medical applications are reviewed. The PMN-PT energy harvester that produced current of 0.22 mA is higher than the rest of the discussed harvesters. Thus, it is more suitable to be used as a sufficient source of energy in biomedical applications. The use of piezoelectric nanowires and ribbons proved successful, and the dual features of device (sensor and actuator) seem advantageous.


2014 ◽  
Vol 613 ◽  
pp. 193-199
Author(s):  
Sheng Fu Sun ◽  
Wei Jie Dong ◽  
Yan Cui

Pre-stressed piezoelectric unimorphs show enhanced actuation displacements and high efficiency of energy harvesting compared with conventional unimorphs. A method to increase the amount of stored energy by injecting elastic energy to energy harvesting system consisting of the THUNDER device is described in this paper. A stretching spring is mounted on the two tabs of THUNDER device in order to inject energy to the system. The mechanical stress applied on THUNDER device results in an increase in the initial stored mechanical and elastic energy, which contribute to the improved response of the modified device. In experiment, two different springs were added on the THUNDER device: one's initial length is 17mm with k=45N/m and another is 33mm with k=145N/m. For the THUNDER device with a spring of k=145N/m and a proof mass of 8.2g, the maximum open circuit VRMS was 29.4V, and output power of 4.53mW was obtained by a load resistor of 90 kΩ at vibration frequency of 51Hz. Compared with standard device, the energy density or the output power at resonance frequency increased by 74.4%. The displacement performance of the modified devices was larger than that of the standard device. Through measurements and analysis, after a stretching spring was attached to the THUNDER device, dielectric constant did not change obviously, while d31 increased a lot. We can conclude that the improvement of energy harvesting is mainly due to the increase of d31 and stress distribution in the THUNDER device. Furthermore, the use of an initial energy injection mechanism based on a nonlinear approach can artificially enhance the conversion abilities of piezoelectric materials.


2008 ◽  
Vol 20 (5) ◽  
pp. 515-527 ◽  
Author(s):  
J.R. Liang ◽  
W.H. Liao

This article aims to provide a comparative study on the functions of piezoelectric energy harvesting, dissipation, and their effects on the structural damping of vibrating structures. Energy flow in piezoelectric devices is discussed. Detailed modeling of piezoelectric materials and devices are provided to serve as a common base for both analyses of energy harvesting and dissipation. Based on these foundations, two applications of standard energy harvesting (SEH) and resistive shunt damping (RSD) are investigated and compared. Furthermore, in the application of synchronized switch harvesting on inductor (SSHI), it is shown that the two functions of energy harvesting and dissipation are coexistent. Both of them bring out structural damping. Further analyses and optimization for the SSHI technique are performed.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 141
Author(s):  
Pornrawee Thonapalin ◽  
Sontipee Aimmanee ◽  
Pitak Laoratanakul ◽  
Raj Das

Piezoelectric materials are used to harvest ambient mechanical energy from the environment and supply electrical energy via their electromechanical coupling property. Amongst many intensive activities of energy harvesting research, little attention has been paid to study the effect of the environmental factors on the performance of energy harvesting from laminated piezoelectric materials, especially when the temperature in the operating condition is different from the room temperature. In this work, thermomechanical effects on the electrical energy harvested from a type of laminated piezoelectric devices, known as thin layer unimorph ferroelectric driver (called THUNDER) were investigated. Three configurations of THUNDER devices were tested in a controlled temperature range of 30–80 °C. The THUNDER devices were pushed by using a cam mechanism in order to generate required displacements and frequencies. The experimental results exhibited a detrimental effect of the elevated temperature on the generated voltage and the harvested electrical power. It is due to changes in residual stress and geometry. These results are advantageous for many applications of the THUNDER devices and for future design of a new laminated piezoelectric sensor and energy harvester in an elevated temperature environment.


2012 ◽  
Vol 2 (5) ◽  
pp. 252-255
Author(s):  
Rudresha K J Rudresha K J ◽  
◽  
Girisha G K Girisha G K

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3512 ◽  
Author(s):  
Corina Covaci ◽  
Aurel Gontean

The goal of this paper is to review current methods of energy harvesting, while focusing on piezoelectric energy harvesting. The piezoelectric energy harvesting technique is based on the materials’ property of generating an electric field when a mechanical force is applied. This phenomenon is known as the direct piezoelectric effect. Piezoelectric transducers can be of different shapes and materials, making them suitable for a multitude of applications. To optimize the use of piezoelectric devices in applications, a model is needed to observe the behavior in the time and frequency domain. In addition to different aspects of piezoelectric modeling, this paper also presents several circuits used to maximize the energy harvested.


Sign in / Sign up

Export Citation Format

Share Document