scholarly journals Modeling Interactions of Iron Atoms Encapsulated in Nanotubes

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 845
Author(s):  
Mansoor H. Alshehri

The behavior and electronic structure of the carbon and boron nitride nanotubes that interact with the iron atom were studied using the Lennard–Jones potential and hybrid discrete-continuum approach. The iron-filled nanotubes were explored by means of classical applied mathematics in order to develop an understanding of the underlying mechanisms of the encapsulation of metal atoms inside nanotubes. Herein, we examined the suction energy and then the equilibrium offset positions of the iron atoms inside zigzag and armchair single-walled nanotubes, to obtain the optimal radii of the tubes and encapsulate the iron atom by determining the radii that provide the minimum interaction energies. Our observations indicate that the encapsulation behaviour depends on the radii of the nanotubes, and we predict that it is less likely for an iron atom to be enclosed inside the nanotubes when the value of the tube radius is less than ≈2.5 Å. The optimal nanotube necessary to fully enclose the iron atom has a radius of ≈4.2 for both carbon and boron nitride nanotubes, which approximately corresponds to the interaction energies of −1.8 kcal/mol. In its entirety, this work presents an approach that might further the understanding of the encapsulation of metal atoms inside nanotubes.

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Mansoor H. Alshehri

Herein, the encapsulation mechanism of nickel atoms into carbon and boron nitride nanotubes is investigated to determine the interaction energies between the nickel atom and a nanotube. Classical modelling procedures, together with the 6-12 Lennard-Jones potential function and the hybrid discrete-continuous approach, are used to calculate the interaction of a nickel atoms with (i,i) armchair and (i,0) zigzag single-walled nanotubes. Analytical expressions for the interaction energies are obtained to determine the optimal radii of the tubes to enclose the nickel atom by determining the radii that give the minimum interaction energies. We first investigate the suction energy of the nickel atom entering the nanotube. The atom is assumed to be placed on the axis and near an open end of a semi-infinite, single-walled nanotube. Moreover, the equilibrium offset positions of the nickel atoms are found with reference to the cross-section of the nanotubes. The results may further the understanding of the encapsulation of Ni atoms inside defective nanotubes. Furthermore, the results may also aid in the design of nanotube-based materials and increase the understanding of their nanomagnetic applications and potential uses in other areas of nanotechnology.


2019 ◽  
Vol 9 (11) ◽  
pp. 2301 ◽  
Author(s):  
Pakhapoom Sarapat ◽  
James Hill ◽  
Duangkamon Baowan

After the discovery of circular formations of single walled carbon nanotubes called fullerene crop circles, their structure has become one of the most researched amongst carbon nanostructures due to their particular interesting physical properties. Several experiments and simulations have been conducted to understand these intriguing objects, including their formation and their hidden characteristics. It is scientifically conceivable that these crop circles, nowadays referred to as carbon nanotori, can be formed by experimentally bending carbon nanotubes into ring shaped structures or by connecting several sections of carbon nanotubes. Toroidal carbon nanotubes are likely to have many applications, especially in electricity and magnetism. In this review, geometry, construction, modelling and possible applications are discussed and the existing known analytical expressions, as obtained from the Lennard-Jones potential and the continuum approximation, for their interaction energies with other nanostructures are summarised.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 906
Author(s):  
Mansoor H. Alshehri

Two-dimensional nanomaterials, such as graphene and hexagonal boron nitride nanosheets, have attracted tremendous interest in the research community and as a starting point for the development of nanotechnology. Using classical applied mathematical modeling, we derive explicit analytical expressions to determine the binding energies of noble metals, including copper, silver, gold, platinum and iridium (Cu, Ag, Au, Pt and Ir) atoms, on graphene and hexagonal boron nitride nanosheets. We adopt the 6–12 Lennard–Jones potential function, together with the continuous approach, to determine the preferred minimum energy position of an offset metal atom above the surface of the graphene and hexagonal boron nitride nanosheets. The main results of this study are analytical expressions of the interaction energies, which we then utilize to report the mechanism of adsorption of the metal atoms on graphene and hexagonal boron nitride surfaces. The results show that the minimum binding energy occured when Cu, Ag, Au, Pt and Ir were set at perpendicular distances in the region from 3.302 Å to 3.683 Å above the nanosheet surface, which correspond to adsorption energies in the region ranging from 0.842 to 2.978 (kcal/mol). Our results might assist in providing information on the interaction energies between the metal atoms and the two-dimensional nanomaterials.


2021 ◽  
Vol 1967 (1) ◽  
pp. 012044
Author(s):  
I Zaporotskova ◽  
N Boroznina ◽  
P Zaporotskov ◽  
S Boroznin ◽  
L Kozhitov

2020 ◽  
Vol 10 (3) ◽  
pp. 356-363
Author(s):  
Samuel A. Surulere ◽  
Michael Y. Shatalov ◽  
Andrew C.P.G. Mkolesia ◽  
Adejimi A. Adeniji

Background: The knowledge of parameter estimation for interatomic potentials is useful in the computation of the vibrational structure of van der Waals molecules. Methods: On the estimation of the Generalized Morse and Classical Lennard-Jones potential energy functions, complex conjugates eigenvalues may be obtained. Different approaches can be used to solve this resulting problem. A method that uses the objective least squares function method to estimate parameters of the interatomic potentials is employed. Results: Numerical simulation of the systems using metal atoms yields complex conjugates eigenvalues at some initial point. Conclusion: Other approaches of solving the complex conjugates eigenvalues problem are discussed comprehensively.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


Sign in / Sign up

Export Citation Format

Share Document