scholarly journals Effects of Trace Amounts of Mn, Zr and Sc on the Recrystallization and Corrosion Resistance of Al-5Mg Alloys

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 926
Author(s):  
Sheng-Long Lee ◽  
Yang-Chun Chiu ◽  
Tse-An Pan ◽  
Mien-Chung Chen

This study aimed to explore the effects of trace amounts of Mn, Zr, and Sc on the recrystallization behavior and corrosion resistance of Al-5Mg alloys after process annealing by means of alloy design and microstructure analysis of electron backscatter diffraction (EBSD), electron microprobe (EPMA), and electron microscopes (TEM and SEM). The main objective was to obtain alloys with better corrosion resistance. The results show that the fine Al3Zr and Al3Sc precipitated particles were both superior to the MnAl6 particles in inhibiting grain and sub-grain boundary migrations. Therefore, the Zr-containing and Sc-containing alloys were better than the Mn-containing alloy in inhibiting recrystallization. For further comparison, the thermal stability of the Al3Sc particles was better than that of the Al3Zr particles, so the Sc-containing alloy at the high temperature above 350 °C inhibited grain growth better than the Zr-containing alloy. During the recovery stage of the alloy in the recrystallization process, the β-Mg2Al3 phase precipitated on the sub-grain boundary, thus reducing the occurrence of intergranular corrosion. However, in the initial stage of recrystallization, the β-Mg2Al3 phase continuously precipitated on the grain boundary, causing obvious intergranular corrosion. For the Sc-containing alloy, because there was no obvious grain growth stage, the β-Mg2Al3 phase continuously precipitated on the grain boundary, and thereby intergranular corrosion occurred. Therefore, its corrosion resistance was greatly reduced. By contrast, for the alloy containing Mn or Zr, because of obvious grain growth, magnesium atoms aggregated. As a result, the β-Mg2Al3 phase discontinuously precipitated on the grain boundary. The corrosion morphology was local pitting corrosion rather than intergranular corrosion, and thus the corrosion resistance of the alloy was enhanced. As a novelty, this study clearly observed the sensitized precipitation and corrosion morphology of the β-Mg2Al3 phase of Al-5Mg alloy under different recrystallization methods. This will be of benefit to the design of anti-corrosion measures for the future manufacturing and application of Al-5Mg alloy.

2004 ◽  
Vol 467-470 ◽  
pp. 935-940 ◽  
Author(s):  
Sandra Piazolo ◽  
Vera G. Sursaeva ◽  
David J. Prior

First results from grain growth experiments in a columnar structured Al foil show several interesting features: (a) the grain size distribution remains heterogeneous even after up to 300 min. annealing and (b) the Von Neumann-Mullins relation is not always satisfied. To clarify the underlying reasons for these features, in-situ heating experiments within a Scanning Electron Microscope (SEM) were combined with detailed Electron Backscatter Diffraction (EBSD) analysis. These show that the movement of boundaries can be strongly heterogeneous. For example, the complete replacement of one grain by a neighbouring grain without significant change of the surrounding grain boundary topology is frequently seen. Experiments show that grain boundary energy and/or mobility are anisotropic both with respect to misorientation and orientation of grain boundary plane. Low energy and/or mobility boundaries are commonly low angle boundaries, twin boundaries and boundaries that form traces to a low index plane of at least one of the adjacent grains. As a consequence the Von Neumann-Mullins relation is not always satisfied.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ritabrata Dobe ◽  
Anuja Das ◽  
Rabibrata Mukherjee ◽  
Saibal Gupta

AbstractHydrous fluids play a vital role in the chemical and rheological evolution of ductile, quartz-bearing continental crust, where fluid percolation pathways are controlled by grain boundary domains. In this study, widths of grain boundary domains in seven quartzite samples metamorphosed under varying crustal conditions were investigated using Atomic Force Microscopy (AFM) which allows comparatively easy, high magnification imaging and precise width measurements. It is observed that dynamic recrystallization at higher metamorphic grades is much more efficient at reducing grain boundary widths than at lower temperature conditions. The concept of force-distance spectroscopy, applied to geological samples for the first time, allows qualitative estimation of variations in the strength of grain boundary domains. The strength of grain boundary domains is inferred to be higher in the high grade quartzites, which is supported by Kernel Average Misorientation (KAM) studies using Electron Backscatter Diffraction (EBSD). The results of the study show that quartzites deformed and metamorphosed at higher grades have narrower channels without pores and an abundance of periodically arranged bridges oriented at right angles to the length of the boundary. We conclude that grain boundary domains in quartz-rich rocks are more resistant to fluid percolation in the granulite rather than the greenschist facies.


2011 ◽  
Vol 127 ◽  
pp. 89-94 ◽  
Author(s):  
Ye Chao Zhu ◽  
Jiong Hui Mao ◽  
Fa Tang Tan ◽  
Xue Liang Qiao

Low energy grain boundaries were considered to be important in abnormal grain growth by theoretical deduction. The disorientation angles and coincidence site lattice grain boundaries distribution of more than 20 Goss grains and their neighboring matrix grains in primary recrystallized Fe-3%Si alloy were investigated using an electron backscatter diffraction method. It was found that the frequency of low energy grain boundaries of Goss grains which are more likely to abnormally grow are higher than their neighboring matrix grains, which indicated that low energy grain boundaries play a dominant role in the abnormal grain growth of Fe-3%Si alloy. The result meets well with the abnormal grain growth theory.


2012 ◽  
Vol 1383 ◽  
Author(s):  
Fan Zhang ◽  
David P. Field

ABSTRACTAlloy 617, a high-temperature creep-resistant, nickel-based alloy, is being considered for the primary heat exchanger for the next generation nuclear plant, which is highly influenced by thermal creep. The main objective of this study is to inspect the crept grain boundaries under its imitated working condition, and to determine which boundaries are susceptible to damage and which are more resistant, in order to help improve its creep resistance in future manufacturing. Electron backscatter diffraction was used to measure the proportions of each boundary by observing and analyzing these crept microstructures. The grain-boundary distribution can be expressed in terms of five parameters including three parameters of lattice misorientation and two parameters of the grain-boundary plane normal. Three conditions were analyzed: the original material, metal that was annealed without stress, and ones that were crept at 1000ºC at 19 MPa and 25 MPa for various times. Though observation, it is found that the voids seldom occur at low angle grain boundaries, and coherent twin boundaries are also resist to creep damage.


2000 ◽  
Vol 6 (S2) ◽  
pp. 940-941
Author(s):  
A.J. Schwartz ◽  
M. Kumar ◽  
P.J. Bedrossian ◽  
W.E. King

Grain boundary network engineering is an emerging field that encompasses the concept that modifications to conventional thermomechanical processing can result in improved properties through the disruption of the random grain boundary network. Various researchers have reported a correlation between the grain boundary character distribution (defined as the fractions of “special” and “random” grain boundaries) and dramatic improvements in properties such as corrosion and stress corrosion cracking, creep, etc. While much early work in the field emphasized property improvements, the opportunity now exists to elucidate the underlying materials science of grain boundary network engineering. Recent investigations at LLNL have coupled automated electron backscatter diffraction (EBSD) with transmission electron microscopy (TEM)5 and atomic force microscopy (AFM) to elucidate these fundamental mechanisms.An example of the coupling of TEM and EBSD is given in Figures 1-3. The EBSD image in Figure 1 reveals “segmentation” of boundaries from special to random and random to special and low angle grain boundaries in some grains, but not others, resulting from the 15% compression of an Inconel 600 polycrystal.


2007 ◽  
Vol 558-559 ◽  
pp. 873-878 ◽  
Author(s):  
Dorothée Dorner ◽  
Yoshitaka Adachi ◽  
Kaneaki Tsuzaki

Compression tests were performed on Fe-3%Si specimens with few grains. The deformation microstructure and microtexture were investigated by electron backscatter diffraction (EBSD) and related to the initial crystal orientation and grain boundary characteristics. Groups of microbands were found that are characterised by a periodic change in crystal orientation, shear at the grain boundary, and the formation of new grains. It is supposed that these microband groups represent an early stage of microshear band development.


Sign in / Sign up

Export Citation Format

Share Document