scholarly journals Structures of a Phosphoryl Derivative of 4-Allyl-2,4-dihydro-3H-1,2,4-triazole-3-thione: An Illustrative Example of Conformational Polymorphism

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1126
Author(s):  
Ivan V. Fedyanin ◽  
Aida I. Samigullina ◽  
Ivan A. Krutov ◽  
Elena L. Gavrilova ◽  
Dmitry V. Zakharychev

Two polymorphic forms of a conformationally flexible molecule, 5-[(Diphenylphosphoryl)methyl]-4-(prop-2-en-1-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, were obtained by crystallization and characterized by X-ray diffraction analysis and differential scanning calorimetry. The relative stability of polymorphic forms was estimated with DFT calculations of crystal structures and isolated molecules. It turns out, that in the first more dense polymorph with higher cohesion energy and crystal lattice energy, the molecule adopts an energetically unfavorable conformation, and forms dimers with lower H-bond strength, as compared to the second polymorph. On the other hand, in the second polymorph, the molecule adopts almost the lowest-energy conformation and forms infinite chains via strong H-bonds. The first form that seems to be more thermodynamically stable at room temperature transforms into the second form via two endothermic phase transitions; the apparent irreversibility of the transition is due to high energy difference between the molecular conformations in crystals.

2011 ◽  
Vol 479 ◽  
pp. 54-61 ◽  
Author(s):  
Fei Wang ◽  
Ya Ping Wang

Microstructure evolution of high energy milled Al-50wt%Si alloy during heat treatment at different temperature was studied. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the size of the alloy powders decreased with increasing milling time. The observable coarsening of Si particles was not seen below 730°C in the high energy milled alloy, whereas, for the alloy prepared by mixed Al and Si powders, the grain growth occurred at 660°C. The activation energy for the grain growth of Si particles in the high energy milled alloy was determined as about 244 kJ/mol by the differential scanning calorimetry (DSC) data analysis. The size of Si particles in the hot pressed Al-50wt%Si alloy prepared by high energy milled powders was 5-30 m at 700°C, which was significantly reduced compared to that of the original Si powders. Thermal diffusivity of the hot pressed Al-50wt%Si alloy was 55 mm2/s at room temperature which was obtained by laser method.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nguyen Thi Thuy ◽  
Dang Le Minh

Nanosized LaFeO3material was prepared by 3 methods: high energy milling, citrate gel, and coprecipitation. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) show that the orthorhombic LaFeO3phase was well formed at a low sintering temperature of 500°C in the citrate-gel and co-precipitation methods. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations indicate that the particle size of the LaFeO3powder varies from 10 nm to 50 nm depending on the preparation method. The magnetic properties through magnetization versus temperatureM(T)and magnetization verses magnetic fieldM(H)characteristics show that the nano-LaFeO3exhibits a weak ferromagnetic behavior in the room temperature, and theM(H)curves are well fitted by Langevin functions.


2018 ◽  
Vol 24 (5) ◽  
pp. 813-820 ◽  
Author(s):  
Junjie Wu ◽  
Xiang Xu ◽  
Zhihao Zhao ◽  
Minjie Wang ◽  
Jie Zhang

Purpose The purpose of this paper is to investigate the effect of selective laser sintering (SLS) method on morphology and performance of polyamide 12. Design/methodology/approach Crystallization behavior is critical to the properties of semi-crystalline polymers. The crystallization condition of SLS process is much different from others. The morphology of polyamide 12 produced by SLS technology was investigated using scanning electron microscopy, polarized light microscopy, differential scanning calorimetry, X-ray diffraction and wide-angle X-ray diffraction. Findings Too low fill laser power brought about bad fusion of powders, while too high energy input resulted in bad performance due to chain scission of macromolecules. There were three types of crystal in the raw powder material, denoted as overgrowth crystal, ring-banded spherulite and normal spherulite. Originality/value In this work, SLS samples with different sintering parameters, as well as compression molding sample for the purpose of comparison, were made to study the morphology and crystal structure of sintered PA12 in detail.


2013 ◽  
Vol 2 (1) ◽  
Author(s):  
Samantha Cristina Pinho ◽  
Janaina Costa Da Silva

Solid lipid microparticles produced with a mixture of cupuacu butter and stearic acid were used to microencapsulate a commercial casein hydrolysate (Hyprol 8052). The composition of the lipid matrix used for the production of the lipid microparticles was chosen according to data on the wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) of bulk lipid mixtures, which indicated that the presence of 10 % cupuacu butter was sufficient to significantly change the crystalline arrangement of pure stearic acid. Preliminary tests indicated that a minimum proportion of 4 % of surfactant (polysorbate 80) was necessary to produce empty spherical lipid particles with average diameters below 10 mm. The lipid microparticles were produced using 20 % cupuacu butter and 80 % stearic acid and then stabilized with 4 % of polysorbate 80, exhibiting an encapsulation efficiency of approximately 74 % of the casein hydrolysate. The melting temperature of the casein hydrolysate-loaded lipid microparticles was detected at 65.2 °C, demonstrating that the particles were solid at room temperature as expected and indicating that the incorporation of peptides had not affected their thermal behavior. After 25 days of storage, however, there was a release of approximately 30 % of the initial amount of encapsulated casein hydrolysate. This release was not thought to have been caused by the liberation of encapsulated casein hydrolysate. Instead, it was attributed to the possible desorption of the adsorbed peptides present on the surface of the lipid microparticles.


2012 ◽  
Vol 535-537 ◽  
pp. 950-953
Author(s):  
Li Na Bai ◽  
Gui Xing Zheng ◽  
Zhi Jian Duan ◽  
Jian Jun Zhang

The influences of Gd concentration on martensitic transformation and magnetic properties of NiMnIn alloys were investigated by differential scanning calorimetry (DSC) , vibrating sample magnetometry (VSM), X-ray diffraction (XRD) and etc. It is Observed through the experiment: the addition of Gd enhances martensite transition temperature;X-ray diffraction analysis of experimental alloys is revealed that to the mixture is martensite and austenite at room temperature; content of Gd is not proportional to the improvement of magnetic property.


2021 ◽  
pp. 2150407
Author(s):  
S. I. Ibrahimova

The crystal structure and thermal properties of the [Formula: see text] compound have been investigated. Structural studies were performed by X-ray diffraction at room temperature. The crystal structure of this compound was found to correspond to the hexagonal symmetry of the space group P61. Thermal properties were studied using a differential scanning calorimetry (DSC). It was found in the temperature range [Formula: see text] that thermal effects occur at temperatures [Formula: see text] and [Formula: see text]. The thermodynamic parameters of these effects are calculated.


Author(s):  
Tamara J. Bednarchuk ◽  
Wolfgang Hornfeck ◽  
Vasyl Kinzhybalo ◽  
Zhengyang Zhou ◽  
Michal Dušek ◽  
...  

The organic–inorganic hybrid compound 4-aminopyridinium tetraaquabis(sulfato)iron(III), (C5H7N2)[FeIII(H2O)4(SO4)2] (4apFeS), was obtained by slow evaporation of the solvent at room temperature and characterized by single-crystal X-ray diffraction in the temperature range from 290 to 80 K. Differential scanning calorimetry revealed that the title compound undergoes a sequence of three reversible phase transitions, which has been verified by variable-temperature X-ray diffraction analysis during cooling–heating cycles over the temperature ranges 290–100–290 K. In the room-temperature phase (I), space group C2/c, oxygen atoms from the closest Fe-atom environment (octahedral) were disordered over two equivalent positions around a twofold axis. Two intermediate phases (II), (III) were solved and refined as incommensurately modulated structures, employing the superspace formalism applied to single-crystal X-ray diffraction data. Both structures can be described in the (3+1)-dimensional monoclinic X2/c(α,0,γ)0s superspace group (where X is ½, ½, 0, ½) with modulation wavevectors q = (0.2943, 0, 0.5640) and q = (0.3366, 0, 0.5544) for phases (II) and (III), respectively. The completely ordered low-temperature phase (IV) was refined with the twinning model in the triclinic P{\overline 1} space group, revealing the existence of two domains. The dynamics of the disordered anionic substructure in the 4apFeS crystal seems to play an essential role in the phase transition mechanisms. The discrete organic moieties were found to be fully ordered even at room temperature.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 853
Author(s):  
Rim Ameur ◽  
Mahmoud Chemingui ◽  
Tarek Bachaga ◽  
Lluisa Escoda ◽  
Mohamed Khitouni ◽  
...  

The structure and thermal behavior are key factors that influence the functional response of Ni–Mn–Sn alloys. The present study reports the production as well as the structure and thermal analysis of melt-spun (solidification rate: 40 ms−1) Ni50 Mn50−xSnx (x = 10, 11, 12 and 13 at.%) alloys. X-ray diffraction measurements were performed at room temperature. The austenite state has an L21 structure, whereas the structure of the martensite is 7M or 10M (depending on the Sn/Mn percentage). Furthermore, the structural martensitic transformation was detected by differential scanning calorimetry (DSC). As expected, upon increasing the Sn content, the characteristic temperatures also increase. The same tendency is detected in the thermodynamic parameters (entropy and enthalpy). The e/a control allows the development production of alloys with a transformation close to room temperature.


2016 ◽  
Vol 31 (2) ◽  
pp. 104-109 ◽  
Author(s):  
Baozhuo Zhang ◽  
Marcus L. Young

Many technological applications of austenitic shape memory alloys (SMAs) involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity. In this paper, we investigated the effect of mechanical bending of pseudoelastic NiTi SMA wires using high-energy synchrotron radiation X-ray diffraction (SR-XRD). Differential scanning calorimetry was performed to identify the phase transformation temperatures. Scanning electron microscopy images show that micro-cracks in compressive regions of the wire propagate with increasing bend angle, while tensile regions tend not to exhibit crack propagation. SR-XRD patterns were analyzed to study the phase transformation and investigate micromechanical properties. By observing the various diffraction peaks such as the austenite (200) and the martensite (${\bar 1}12$), (${\bar 1}03$), (${\bar 1}11$), and (101) planes, intensities and residual strain values exhibit strong anisotropy, depending upon whether the sample is in compression or tension during bending.


Sign in / Sign up

Export Citation Format

Share Document