scholarly journals Reactive Air Brazing of TiAl Alloy Using Ag-CuO: Microstructure and Joint Properties

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1496
Author(s):  
Haoran Yang ◽  
Xiaoqing Si ◽  
Chun Li ◽  
Jian Cao

TiAl alloy was successfully brazed with Ag-CuO filler in air atmosphere under simple technical conditions. The wettability of a series of Ag-CuO fillers on TiAl was analyzed. Ag-2mol%CuO filler possessed good wetting behavior on TiAl alloy. The microstructure and mechanical properties of the brazed joints were investigated. Oxide layers can be found on both sides, which can be divided into external TiO2-rich layer and internal Al2O3-rich layer. The maximum shear strength of the joint was obtained at 1020 °C holding for 20 min.

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Haiyan Chen ◽  
Xin Nai ◽  
Shuai Zhao ◽  
Decai Lu ◽  
Zhikang Shen ◽  
...  

Ti3SiC2 ceramic and copper were successfully vacuum brazed using Ag-Cu-Ti filler and Ag-Cu-Ti filler with copper mesh, respectively. In this study, the effects of copper mesh and brazing parameters on the interface microstructure and mechanical properties of the joints were systematically studied. The results revealed that the typical interfacial microstructure of joint was Ti3SiC2 ceramic/Ti5Si3 + TiC + Ti2Cu + Ti3Cu/Ag (s, s) + Cu (s, s)/eutectic Ag-Cu + TiSiCu/Cu. A maximum shear strength of joint obtained at a brazing temperature of 870 °C and a holding time of 10 min can reached up to 66.3 ± 1.2 MPa, which was 34.7% higher than that without copper mesh. The improvement of mechanical property was attributed to the extraordinary plasticity of copper mesh, which reduced the residual stress caused by the difference in the coefficient of thermal expansion at the interface of joints. As the brazing temperature and holding time further increased, the shear strength of joints decreased due to the excessively thick reaction layer of intermetallic compounds.


2013 ◽  
Vol 785-786 ◽  
pp. 1091-1094 ◽  
Author(s):  
Hui Bin Sun ◽  
Hui Bin Xu

2024 al alloy and Az31B Mg alloy joint by stirring brazing without flux in air. The microstructure and mechanical character of the interface were investigated. The results show that the maximum shear strength of the Al interface can up to 58.7Mpa and 37.5Mpa to Mg interface.


2015 ◽  
Vol 60 (4) ◽  
pp. 2593-2598 ◽  
Author(s):  
M. Różański ◽  
D. Majewski ◽  
K. Krasnowski

This study presents the basic physico-chemical properties and describes the brazeability of titanium. The work contains the results of macro and microscopic metallographic examination as well as the results of strength-related tests of vacuum and induction brazed joints made of Grade 2 technical titanium using the Cu 0.99 and Ag 272 filler metal interlayers and F60T flux intended for titanium brazing in the air atmosphere.


2011 ◽  
Vol 418-420 ◽  
pp. 1242-1245
Author(s):  
Zhuo Jun Chen ◽  
Chang Jin Yang ◽  
Xiao Long Gu ◽  
Cheng Dong Wu ◽  
Long Long Feng

Vacuum brazing of 316L stainless steel with BNi-2 brazing filler metal.The effects of brazing temperature and brazing clearance on microstructure and mechanical properties of vacuum brazed joints of 316L stainless steel were studied. The results show that: As brazing temperature being 1 070 °C, with the increasing of the brazing clearance, the joint shear strength value become lower and lower. Brazing clearance compounds mainly contain intermetallic and solid solutions.


2019 ◽  
Vol 91 (10) ◽  
pp. 35-41 ◽  
Author(s):  
Li Hong ◽  
Liu Xuan ◽  
Huang Haixin

Reliable ceramics/metal joints have an extensive application in the aerospace and biomedical area. However, ZrO2ceramic has not been investigated systematically compared to the Si3N4and Al2O3ceramic. Therefore, successful brazing of ZrO2ceramic and Ti-6A-4V alloy was achieved by using a binary active Ti-28Ni filler metal in this paper. The effect of holding time on the microstructure of ZrO2 ceramic/filler metal interface and mechanical properties of brazed joints was investigated. The results indicated that the representative interfacial microstructure was ZrO2ceramic/Ti2O/Ni2Ti4O/Ti-rich phase/Ti2Ni+α-Ti. With the increase of holding time, the thickness of Ti-rich layer in the interface of ZrO2/Ti-6Al-4Vjoint decreased obviously due to the diffusion of Ti atoms. Substantial brittle intermetallic compounds Ti2Ni and Ni2Ti4O were formed in the joint, which were detrimental to the mechanical properties of the brazed joints. The maximum shear strength of joint was 112.7 MPa when brazed at 1060 °C for 10 min.


2011 ◽  
Vol 418-420 ◽  
pp. 1494-1497 ◽  
Author(s):  
Xiao Long Gu ◽  
Chang Jin Yang ◽  
Zhuo Jun Chen ◽  
Cheng Dong Wu ◽  
Long Long Feng

The effects of brazing temperature on microstructure and mechanical properties of vacuum brazed joints of 316L stainless steel were studied. Choose three soldering temperature. After soldering, observed the microstructure, element distribution, microhardness and shear strength of welding clearance. The results show that the welding temperature for 940 °C, the brazing clearance organization mainly by Ni-Cr-P phase composition. Joint performance is poor, element can't get enough spread. P element does not spread easily, mainly in the brazing clearance; Cr element can spread along the grain boundary into mother material; the ability of spread of Ni elements is less than the Cr element. While welding temperature of 970 °C, the shear strength is the highest, and the comprehensive performance is the best.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Yuqing Chen ◽  
Guofeng Wang ◽  
Yongkang Liu ◽  
Liqiang Zhan ◽  
He Diao ◽  
...  

Titanium alloys used to be welded to gain good joint strength at 920 °C through diffusion bonding. However, due to the heat preservation at high temperatures for a long time, we obtain joints with great bond strength while the mechanical properties of the sheet are lost. In this paper, taking Ti6Al4V alloy as an example, we studied the microstructure of the surface under the different times of surface mechanical attrition treatment (SMAT). In addition, the microstructure and mechanical properties after diffusion bonding at 800 °C-5 MPa-1 h were also conducted. The results show that the shear strength of TC4 alloy welded joint after SMAT treatment is improved, and the maximum shear strength can reach 797.7 MPa, up about 32.4%


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 248
Author(s):  
Man Zhang

To meet the demand for efficient and reliable copper and aluminum (Cu/Al) joints in refrigeration and electric power industries, interfacial reactions in 3003 Al/T2 Cu and 1035 Al/T2 Cu joints brazed by Zn-xAl (x ranged from 2–25 wt.%) filler metals and their effects on the mechanical properties of the joints were investigated. Microstructures and fracture surfaces were observed combining with composition analysis. For 3003 Al/Cu joints, bulk CuAl and CuAl2 intermetallic compound (IMC) formed in brazing seams, and a CuAl IMC layer formed at the Cu side interfaces. For 1035 Al/Cu joints, bulk CuAl2 IMC formed in brazing seams, and an Al4.2Cu3.2Zn0.7 IMC layer formed at the Cu side interfaces. For both kinds of joints, shear strength increased first, then decreased with the increasing Al content. The increase in shear strength was because Al promoted the formation of Cu-Al IMC, and caused dispersion strengthening. With the excessive Al content, however, the bulk IMC became coarse and the IMC layers at Cu side interfaces grew thick, causing the joint strength to decrease due to stress concentration. The strength of 3003 Al/Cu joints was always higher than that of 1035 Al/Cu, and their highest strength were achieved by Zn-12Al and Zn-15Al, respectively.


Sign in / Sign up

Export Citation Format

Share Document