scholarly journals Experimental Study on the Oxidation and Diffusion Behavior of Inconel 625 and Tool Materials

Crystals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 471
Author(s):  
Erliang Liu ◽  
Ning Wang ◽  
Jin Qi ◽  
Zhichao Xu ◽  
Xia Liu ◽  
...  

Oxidation and diffusion simulation experiments were conducted to choose the most suitable material for cutting the Inconel 625 superalloy. Three tool materials, WC/Co, coated carbide, and ceramic were used as tool materials in the oxidation simulation experiment. The three tool materials were heated for 30 min in a high-temperature furnace, and the high-temperature oxidation products were examined with scanning electron microscopy and X-ray diffraction (XRD). Tools were heated for 90 min in a vacuum tube furnace. The element diffusion behaviors of Inconel 625 and the tool materials were analysed with energy-dispersive X-ray spectroscopy and XRD. Some of the WC and Co in the WC/Co and coated carbide tool materials was oxidized to WO3, Co3O4, and CoWO4, and the oxidation reaction became more intense as the temperature increased. For the ceramic tool, only TiC was oxidized to TiO2, which indicates good oxidation resistance. In the diffusion couple experiments, the diffusion levels of the three tool materials increased with temperature, but the degree of influence differed. Diffusion of elements was hindered by the (Al, Ti) N coating of the coated carbide and effectively inhibited by the Al2O3 in the ceramic tool. In terms of oxidation and diffusion, the most suitable tool material for cutting Inconel 625 was the ceramic, followed by the coated carbide and then WC/Co.

Author(s):  
Sekar Saladi ◽  
Jyoti V. Menghani ◽  
Satya Prakash

The high temperature oxidation behavior of detonation-gun sprayed Cr3C2-NiCr coatings with and without 0.4 wt. % CeO2 additive on Ni-based superalloy inconel-718 is comparatively discussed in the present study. Oxidation studies were carried out at 900°C for 100 cycles in air under cyclic heating and cooling conditions on bare and coated superalloys. The thermo-gravimetric technique was used to establish kinetics of oxidation. X-ray diffraction, SEM/EDAX and X-ray mapping techniques were used to analyze the oxidation products of bare and coated samples. The results indicate that Cr3C2-NiCr-CeO2 coated specimen showed better oxidation resistance. The overall weight gain and parabolic rate constant of Cr3C2-NiCr-CeO2 coated specimen was found to be lowest in the present study signifying that the addition of CeO2 in Cr3C2-NiCr powder has contributed to the development of adherent and dense oxide scale on the coating at elevated temperature.


2016 ◽  
Vol 836-837 ◽  
pp. 215-219 ◽  
Author(s):  
Teng Da Wang ◽  
Er Liang Liu ◽  
Zhen Li

The high temperature oxidation phenomenon will occur on the tool-workpiece contact area when machining the superalloy. Two kinds of cemented carbide tools (YG6X, YG8) are selected, the coated carbide tool and coated ceramic tool which are suitable for machining superalloy are selected. The resistance furnace is used for heating tool material, and the oxidation resistance experiments are carried out. The results show that: WC which is included in the cemented carbide tool is oxidized to WO3 and the Co is oxidized to Co3O4, Ti which is included in the coated carbide tool is oxidized to TiO2. The grain of the tool is smaller, the oxidation resistance is better. The oxidation resistant of coated carbide tool is better than the non-coated tools. The coated ceramic tool is not substantially oxidized in high temperature situation. The merits order of the oxidation resistant properties is that: coated ceramic tool>coated carbide tool > YG6X>YG8.


2007 ◽  
Vol 546-549 ◽  
pp. 1485-1488 ◽  
Author(s):  
Shi Yu Qu ◽  
Ya Fang Han ◽  
Jin Xia Song ◽  
Yong Wang Kang

The effects of Cr and Al on high temperature oxidation resistance of Nb-Si system intermetallics have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and weight gain method. The results showed that the high temperature oxidation resistance can be substantially improved by proper Cr or Al addition. The further analysis revealed that Cr promotes the formation of CrNbO4 in scale and improve the adherence between the oxide scale and the substrate. It also found that Al improves the surface morphology of oxide scale and changes oxidation products by promoting the AlNbO4 formation.


2019 ◽  
Vol 546 (1) ◽  
pp. 137-147
Author(s):  
Erliang Liu ◽  
Xudong Wei ◽  
Mingming Wang ◽  
Tengda Wang

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


Author(s):  
ZHAO ZHANG ◽  
JIANING LI ◽  
ZHIYUN YE ◽  
CAINIAN JING ◽  
MENG WANG ◽  
...  

In this paper, the high-temperature oxidation resistant coating on the TA15 titanium alloy by laser cladding (LC) of the KF110-B4C-Ag mixed powders was analyzed in detail. The scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) images indicated that a good metallurgy bond between the fabricated coating/TA15 was formed; also the fine/compact microstructure was produced after a cladding process. The oxidation mass gain of TA15 was higher than that of the coating after LC process, which were 3.72 and 0.91[Formula: see text]mg[Formula: see text]cm[Formula: see text], respectively, at 60[Formula: see text]h, greatly enhancing the high temperature oxidation resistance.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2104 ◽  
Author(s):  
Hediyeh Dabbaghi ◽  
Keyvan Safaei ◽  
Mohammadreza Nematollahi ◽  
Parisa Bayati ◽  
Mohammad Elahinia

In this study, the effect of the addition of Hf on the oxidation behavior of NiTi alloy, which was processed using additive manufacturing and casting, is studied. Thermogravimetric analyses (TGA) were performed at the temperature of 500, 800, and 900 °C to assess the isothermal and dynamic oxidation behavior of the Ni50.4Ti29.6Hf20 at.% alloys for 75 h in dry air. After oxidation, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to analyze the oxide scale formed on the surface of the samples during the high-temperature oxidation. Two stages of oxidation were observed for the NiTiHf samples, an increasing oxidation rate during the early stage of oxidation followed by a lower oxidation rate after approximately 10 h. The isothermal oxidation curves were well matched with a logarithmic rate law in the initial stage and then by parabolic rate law for the next stage. The formation of multi-layered oxide was observed for NiTiHf, which consists of Ti oxide, Hf oxide, and NiTiO3. For the binary alloys, results show that by increasing the temperature, the oxidation rate increased significantly and fitted with parabolic rate law. Activation energy of 175.25 kJ/mol for additively manufactured (AM) NiTi and 60.634 kJ/mol for AM NiTiHf was obtained.


1992 ◽  
Vol 36 ◽  
pp. 411-422
Author(s):  
Chun Liu ◽  
Jean-Lou Lebrun ◽  
François Sibieude

AbstractA high temperature in situ X-Tay diffraction (HTXRD) instrument was devised for residual stress (RS) and X-ray elastic constant (XECs) investigations. The aim was to gain a better understanding of the stresses developed during high temperature oxidation, which is essential for the lifetime improvement of refractory alloys. The investigators use sin2ψ method to survey the stress evolution during oxidation in both the scale and the substrate, and differential method to determine the XECs that relate the measured/measurable deformation to the stress state of the materials studied. The stresses on the Ni/NiO system are measured in situ. The XECs are determined on XC75 steel samples. This paper presents the theories of stresses and XECs determined by HTXRD and briefly discusses the experimental results.


Sign in / Sign up

Export Citation Format

Share Document