High Temperature Oxidation Behaviour of Detonation-Gun-Sprayed Cr3C2-NiCr-CeO2 Coatings on Inconel-718 at 900°C

Author(s):  
Sekar Saladi ◽  
Jyoti V. Menghani ◽  
Satya Prakash

The high temperature oxidation behavior of detonation-gun sprayed Cr3C2-NiCr coatings with and without 0.4 wt. % CeO2 additive on Ni-based superalloy inconel-718 is comparatively discussed in the present study. Oxidation studies were carried out at 900°C for 100 cycles in air under cyclic heating and cooling conditions on bare and coated superalloys. The thermo-gravimetric technique was used to establish kinetics of oxidation. X-ray diffraction, SEM/EDAX and X-ray mapping techniques were used to analyze the oxidation products of bare and coated samples. The results indicate that Cr3C2-NiCr-CeO2 coated specimen showed better oxidation resistance. The overall weight gain and parabolic rate constant of Cr3C2-NiCr-CeO2 coated specimen was found to be lowest in the present study signifying that the addition of CeO2 in Cr3C2-NiCr powder has contributed to the development of adherent and dense oxide scale on the coating at elevated temperature.

2007 ◽  
Vol 546-549 ◽  
pp. 1485-1488 ◽  
Author(s):  
Shi Yu Qu ◽  
Ya Fang Han ◽  
Jin Xia Song ◽  
Yong Wang Kang

The effects of Cr and Al on high temperature oxidation resistance of Nb-Si system intermetallics have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and weight gain method. The results showed that the high temperature oxidation resistance can be substantially improved by proper Cr or Al addition. The further analysis revealed that Cr promotes the formation of CrNbO4 in scale and improve the adherence between the oxide scale and the substrate. It also found that Al improves the surface morphology of oxide scale and changes oxidation products by promoting the AlNbO4 formation.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


Author(s):  
ZHAO ZHANG ◽  
JIANING LI ◽  
ZHIYUN YE ◽  
CAINIAN JING ◽  
MENG WANG ◽  
...  

In this paper, the high-temperature oxidation resistant coating on the TA15 titanium alloy by laser cladding (LC) of the KF110-B4C-Ag mixed powders was analyzed in detail. The scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) images indicated that a good metallurgy bond between the fabricated coating/TA15 was formed; also the fine/compact microstructure was produced after a cladding process. The oxidation mass gain of TA15 was higher than that of the coating after LC process, which were 3.72 and 0.91[Formula: see text]mg[Formula: see text]cm[Formula: see text], respectively, at 60[Formula: see text]h, greatly enhancing the high temperature oxidation resistance.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2104 ◽  
Author(s):  
Hediyeh Dabbaghi ◽  
Keyvan Safaei ◽  
Mohammadreza Nematollahi ◽  
Parisa Bayati ◽  
Mohammad Elahinia

In this study, the effect of the addition of Hf on the oxidation behavior of NiTi alloy, which was processed using additive manufacturing and casting, is studied. Thermogravimetric analyses (TGA) were performed at the temperature of 500, 800, and 900 °C to assess the isothermal and dynamic oxidation behavior of the Ni50.4Ti29.6Hf20 at.% alloys for 75 h in dry air. After oxidation, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to analyze the oxide scale formed on the surface of the samples during the high-temperature oxidation. Two stages of oxidation were observed for the NiTiHf samples, an increasing oxidation rate during the early stage of oxidation followed by a lower oxidation rate after approximately 10 h. The isothermal oxidation curves were well matched with a logarithmic rate law in the initial stage and then by parabolic rate law for the next stage. The formation of multi-layered oxide was observed for NiTiHf, which consists of Ti oxide, Hf oxide, and NiTiO3. For the binary alloys, results show that by increasing the temperature, the oxidation rate increased significantly and fitted with parabolic rate law. Activation energy of 175.25 kJ/mol for additively manufactured (AM) NiTi and 60.634 kJ/mol for AM NiTiHf was obtained.


1992 ◽  
Vol 36 ◽  
pp. 411-422
Author(s):  
Chun Liu ◽  
Jean-Lou Lebrun ◽  
François Sibieude

AbstractA high temperature in situ X-Tay diffraction (HTXRD) instrument was devised for residual stress (RS) and X-ray elastic constant (XECs) investigations. The aim was to gain a better understanding of the stresses developed during high temperature oxidation, which is essential for the lifetime improvement of refractory alloys. The investigators use sin2ψ method to survey the stress evolution during oxidation in both the scale and the substrate, and differential method to determine the XECs that relate the measured/measurable deformation to the stress state of the materials studied. The stresses on the Ni/NiO system are measured in situ. The XECs are determined on XC75 steel samples. This paper presents the theories of stresses and XECs determined by HTXRD and briefly discusses the experimental results.


2020 ◽  
Vol 1010 ◽  
pp. 65-70
Author(s):  
Zahraa Zulnuraini ◽  
Noraziana Parimin

This paper investigates the performance of Fe-33Ni-18Cr alloy at high temperature oxidation. The samples were isothermally oxidized at three different oxidation temperatures, namely, 600 °C, 800 °C and 1000 °C for 150 hours. This alloy was ground by using several grits of SiC paper as well as weighed by using analytical balance and measured by using Vernier caliper before oxidation test. The characterization was carried out using scanning electron microscope (SEM) equipped with energy dispersive x-ray (EDX) and x-ray diffraction (XRD). The results show that, the higher oxidation temperatures, the weight gain of the samples were increase. Sample of 1000 °C indicate more weight gain compared to samples oxidized at 600 °C and 800 °C. The kinetic of oxidation of all samples followed the parabolic rate law. The surface morphology of oxide scale at lower temperature is thin and form a continuous layer, while at high temperature, the oxide scale develops thick layer with angular oxide particles.


2019 ◽  
Vol 25 (4) ◽  
pp. 394-400
Author(s):  
Hong LI ◽  
Chengzhi ZHAO ◽  
Tao YAN ◽  
Chao DING ◽  
Hexin ZHANG ◽  
...  

The research is focused on a novel aluminum and copper-containing heat-resistant steel. The steel was designed by the material performance simulation software JmatPro, performed high-temperature oxidation tests at 650 °C and 700 °C atmospheric conditions, and analyzed the high-temperature oxidation processes and its mechanisms.The phase transtions and surface morphology of the oxide films were studied using X-ray diffraction (XRD), electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results showed that the equilibrium phase of the test steel is composed of γ phase and δ phase at 1050 °C and tranforms to tempered martensite and δ-Fe mixed structure after heat treatment. The preferential oxidation of Fe and Cr and the internal oxidation of Al occurred during the high temperature oxidation of the test steel. The oxide films were formed with various shape and weak bonding properties after high-temperature oxidation at 650℃. To the contrary, the oxide films more regular and evenly distributed, and has a certain protective effect after high-temperature oxidation at 700 ℃. The oxide films were divided into two layers, Fe2O3 is main element in the outer layer, the inner layer is mainly consisting the oxide of Cr. However, the addition of Cu element can promote the diffusion of Al and Si elements, which is beneficial to the formation of Al2O3 and SiO2 protective oxide films and excellent in high temperature oxidation resistance.


2010 ◽  
Vol 65 ◽  
pp. 106-111
Author(s):  
Bai Cui ◽  
Rafael Sa ◽  
Daniel Doni Jayaseelan ◽  
Fawad Inam ◽  
Michael J. Reece ◽  
...  

Microstructural evolution of Ti2AlN ceramics during high-temperature oxidation in air has been revealed by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEGSEM), and energy-dispersive spectroscopy (EDS). After oxidation below 1200 °C, layered microstructures formed on Ti2AlN surfaces containing anatase, rutile, and α-Al2O3. Above 1200 °C, more complex layered microstructures formed containing Al2TiO5, rutile, α-Al2O3, and continuous void layers. With increasing temperature, anatase gradually transformed to rutile, and TiO2 reacted with α-Al2O3 to form Al2TiO5. Based on these microstructural observations, an oxidation mechanism for Ti2AlN ceramics is proposed.


2015 ◽  
Vol 817 ◽  
pp. 421-425
Author(s):  
Kun Zhao ◽  
Wan Chang Sun ◽  
Chun Yu Miao ◽  
Hui Cai ◽  
Ju Mei Zhang ◽  
...  

Nickel matrix and Si3N4 micron particles were co-deposited on the aluminum alloy by pulse electro-deposition for high temperature performance. Meanwhile, the oxidation resistance was evaluated through the high temperature oxidation test. The phase structure, micrographs and components of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS) respectively. The results indicated that Si3N4 particles were uniformly distributed across the coating and there were no pores and cracks or other defects at the coating/substrate interface. Ni-Si3N4 composite coatings are characterized by pyramidal micro-crystallite structure. The thickness of Ni-Si3N4 composite coatings were up to 80 μm for 2h. The results also revealed that the Ni-Si3N4 composite coatings presented better oxidation resistance than the pure Ni coating and aluminum alloy at high temperature. After oxidation at 673 K for 8h, the oxidation resistance of Ni-Si3N4 composite coatings presented the improved oxidation resistance behavior compared to pure Ni and the aluminum alloy, respectively.


Sign in / Sign up

Export Citation Format

Share Document