scholarly journals Reflex ROS1 IHC Screening with FISH Confirmation for Advanced Non-Small Cell Lung Cancer—A Cost-Efficient Strategy in a Public Healthcare System

2021 ◽  
Vol 28 (5) ◽  
pp. 3268-3279
Author(s):  
Maisam Makarem ◽  
Doreen A. Ezeife ◽  
Adam C. Smith ◽  
Janice J. N. Li ◽  
Jennifer H. Law ◽  
...  

ROS1 rearrangements are identified in 1–2% of lung adenocarcinoma cases, and reflex testing is guideline-recommended. We developed a decision model for population-based ROS1 testing from a Canadian public healthcare perspective to determine the strategy that optimized detection of true-positive (TP) cases while minimizing costs and turnaround time (TAT). Eight diagnostic strategies were compared, including reflex single gene testing via immunohistochemistry (IHC) screening, fluorescence in-situ hybridization (FISH), next-generation sequencing (NGS), and biomarker-informed (EGFR/ALK/KRAS wildtype) testing initiated by pathologists and clinician-initiated strategies. Reflex IHC screening with FISH confirmation of positive cases yielded the best results for TAT, TP detection rate, and cost. IHC screening saved CAD 1,000,000 versus reflex FISH testing. NGS was the costliest reflex strategy. Biomarker-informed testing was cost-efficient but delayed TAT. Clinician-initiated testing was the least costly but resulted in long TAT and missed TP cases, highlighting the importance of reflex testing. Thus, reflex IHC screening for ROS1 with FISH confirmation provides a cost-efficient strategy with short TAT and maximizes the number of TP cases detected.

Author(s):  
Nirmal Vivek Raut ◽  
Siddharth Srivastava ◽  
Guarav Dilip Gangwani ◽  
Heena Sajid Ali

AbstractTreatment of nonsmall cell lung cancer (NSCLC) carrying an epidermal growth factor receptor (EGFR) mutation depends on EGFR tyrosine kinase inhibitors (TKIs). However, all patients treated with EGFR TKI eventually develop progressive disease. Approximately, 20% of patients do not respond to EGFR TKIs, which is defined as primary resistance. The prognosis of these patients is similar to NSCLC with nondriver mutations. We report a case of a patient with EGFR exon 21 mutation who rapidly progressed in 15 days on Gefitinib. Next-generation sequencing (NGS) showed a MET exon 14 skip mutation coexisting with EGFR exon 21 mutation, causing primary resistance to EGFR TKI. Based on NGS reports, a treatment combining Gefitinib and Capmatinib, a MET inhibitor, induced a rapid response in the patient, which was sustained at the end of 8 months. This clearly emphasizes the need for comprehensive genomic profiling using NGS over single gene testing.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23106-e23106
Author(s):  
Tiffany Yu ◽  
Alison Tradonsky ◽  
Andrew Layton

e23106 Background: Genetic testing to guide 1st-line treatment is recommended for advanced non-small cell lung cancer (aNSCLC), but is complicated by small biopsy specimens available to test increasing numbers of biomarkers. This study compared commercially-available genetic tests for aNSCLC and the investigational use Oncomine™ Dx Target Test next generation sequencing (NGS) assay. Methods: This retrospective analysis used data from a large commercial lab, which offered clinical single-gene tests (EGFR therascreen, ALK Vysis, BRAF cobas, laboratory developed tests [LDT] for ROS1, BRAF, KRAS, MET, RET, and FGFR1); and NGS LDT (Illumina NextSeq 500). The lab also conducted investigational use of Oncomine Dx Target Test assay (Ion Torrent PGM Dx) on archival tissue. Clinical test orders received September 2015 – October 2016 were included. Sample rejection, test initiation, success rates, slide consumption, testing time, and turnaround time (TAT) were assessed. Results: Clinically, 3,857 single-gene and 219 NGS LDT tests were ordered on 1,479 samples for 1,436 patients. A total of 169 Oncomine Dx Target Tests were conducted. Conclusions: Investigational use of Oncomine Dx Target Test at this laboratory showed higher rates of test initiation and successful completion while using less tissue compared to either single-gene testing for ≥4 biomarkers or NGS LDT. This early experience suggests Oncomine Dx Target Test may enable therapy selection with multiple biomarker testing on small tissue samples for more aNSCLC patients compared to current methods. [Table: see text]


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1196 ◽  
Author(s):  
Simarro ◽  
Murria ◽  
Pérez-Simó ◽  
Llop ◽  
Mancheño ◽  
...  

The establishment of precision medicine in cancer patients requires the study of several biomarkers. Single-gene testing approaches are limited by sample availability and turnaround time. Next generation sequencing (NGS) provides an alternative for detecting genetic alterations in several genes with low sample requirements. Here we show the implementation to routine diagnostics of a NGS assay under International Organization for Standardization (UNE-EN ISO 15189:2013) accreditation. For this purpose, 106 non-small cell lung cancer (NSCLC) and 102 metastatic colorectal cancer (mCRC) specimens were selected for NGS analysis with Oncomine Solid Tumor (ThermoFisher). In NSCLC the most prevalently mutated gene was TP53 (49%), followed by KRAS (31%) and EGFR (13%); in mCRC, TP53 (50%), KRAS (48%) and PIK3CA (16%) were the most frequently mutated genes. Moreover, NGS identified actionable genetic alterations in 58% of NSCLC patients, and 49% of mCRC patients did not harbor primary resistance mechanisms to anti-EGFR treatment. Validation with conventional approaches showed an overall agreement >90%. Turnaround time and cost analysis revealed that NGS implementation is feasible in the public healthcare context. Therefore, NGS is a multiplexed molecular diagnostic tool able to overcome the limitations of current molecular diagnosis in advanced cancer, allowing an improved and economically sustainable molecular profiling.


2021 ◽  
Vol 22 (13) ◽  
pp. 7154
Author(s):  
Martina Dameri ◽  
Lorenzo Ferrando ◽  
Gabriella Cirmena ◽  
Claudio Vernieri ◽  
Giancarlo Pruneri ◽  
...  

Next-generation sequencing (NGS) is the technology of choice for the routine screening of tumor samples in clinical practice. In this setting, the targeted sequencing of a restricted number of clinically relevant genes represents the most practical option when looking for genetic variants associated with cancer, as well as for the choice of targeted treatments. In this review, we analyze available NGS platforms and clinical applications of multi-gene testing in breast cancer, with a focus on metastatic triple-negative breast cancer (mTNBC). We make an overview of the clinical utility of multi-gene testing in mTNBC, and then, as immunotherapy is emerging as a possible targeted therapy for mTNBC, we also briefly report on the results of the latest clinical trials involving immune checkpoint inhibitors (ICIs) and TNBC, where NGS could play a role for the potential predictive utility of homologous recombination repair deficiency (HRD) and tumor mutational burden (TMB).


2021 ◽  
Vol 22 (4) ◽  
pp. 1508
Author(s):  
Jordi Maggi ◽  
Samuel Koller ◽  
Luzy Bähr ◽  
Silke Feil ◽  
Fatma Kivrak Pfiffner ◽  
...  

The purpose of this study was to develop a flexible, cost-efficient, next-generation sequencing (NGS) protocol for genetic testing. Long-range polymerase chain reaction (PCR) amplicons of up to 20 kb in size were designed to amplify entire genomic regions for a panel (n = 35) of inherited retinal disease (IRD)-associated loci. Amplicons were pooled and sequenced by NGS. The analysis was applied to 227 probands diagnosed with IRD: (A) 108 previously molecularly diagnosed, (B) 94 without previous genetic testing, and (C) 25 undiagnosed after whole-exome sequencing (WES). The method was validated with 100% sensitivity on cohort A. Long-range PCR-based sequencing revealed likely causative variant(s) in 51% and 24% of proband from cohorts B and C, respectively. Breakpoints of 3 copy number variants (CNVs) could be characterized. Long-range PCR libraries spike-in extended coverage of WES. Read phasing confirmed compound heterozygosity in 5 probands. The proposed sequencing protocol provided deep coverage of the entire gene, including intronic and promoter regions. Our method can be used (i) as a first-tier assay to reduce genetic testing costs, (ii) to elucidate missing heritability cases, (iii) to characterize breakpoints of CNVs at nucleotide resolution, (iv) to extend WES data to non-coding regions by spiking-in long-range PCR libraries, and (v) to help with phasing of candidate variants.


Author(s):  
Clémence TB Pasmans ◽  
Bastiaan BJ Tops ◽  
Elisabeth MP Steeghs ◽  
Veerle MH Coupé ◽  
Katrien Grünberg ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 29-41
Author(s):  
Giorgia Acquaviva ◽  
Michela Visani ◽  
Viviana Sanza ◽  
Antonio De Leo ◽  
Thais Maloberti ◽  
...  

(1) Background: Human papillomaviruses (HPVs) are known to be related to the development of about 5% of all human cancers. The clinical relevance of HPV infection has been deeply investigated in carcinomas of the oropharyngeal area, uterine cervix, and anogenital area. To date, several different methods have been used for detecting HPV infection. The aim of the present study was to compare three different methods for the diagnosis of the presence of the HPV genome. (2) Methods: A total of 50 samples were analyzed. Twenty-five of them were tested using both next generation sequencing (NGS) and VisionArray® technology, the other 25 were tested using Hybrid Capture (HC) II assay and VisionArray® technology. (3) Results: A substantial agreement was obtained using NGS and VisionArray® (κ = 0.802), as well as between HC II and VisionArray® (κ = 0.606). In both analyses, the concordance increased if only high risk HPVs I(HR-HPVs) were considered as “positive”. (4) Conclusions: Our data highlighted the importance of technical choice in HPV characterization, which should be guided by the clinical aims, costs, starting material, and turnaround time for results.


2018 ◽  
Vol 71 (11) ◽  
pp. 989-994 ◽  
Author(s):  
Susan D Richman ◽  
Jennifer Fairley ◽  
Jacqueline A Hall ◽  
Nakul Nataraj ◽  
Mrudul Bhide ◽  
...  

AimsIn addition to providing external quality assessment (EQA) schemes, United Kingdom National External Quality Assessment service (UK NEQAS) for Molecular Genetics also supports the education of laboratories. As an enhancement to the Molecular Pathology EQA scheme, a human cell-line reference sample, manufactured by Thermo Fisher Scientific (AcroMetrix), was provided for analysis. This contained many variants, present at frequencies between 1% and 17.9%.MethodsOne hundred and one laboratories submitted results, with a total of 2889 test results on 53 genes being reported. Known polymorphisms, 46/2889 (1.59%) results, were excluded. Variants detected in the seven most commonly reported (and clinically relevant) genes, KRAS, NRAS, BRAF, EGFR, PIK3CA, KIT and PDGFRA, are reported here, as these genes fall within the scope of UK NEQAS EQA schemes.ResultsNext generation sequencing (NGS) was the most commonly performed testing platform. There were between 5 and 27 validated variants in the seven genes reported here. Eight laboratories correctly reported all five NRAS variants, and two correctly reported all eight BRAF variants. The validated mean variant frequency was lower than that determined by participating laboratories, with single-gene testing methodologies showing less variation in estimated frequencies than NGS platforms. Laboratories were more likely to correctly identify clinically relevant variants.ConclusionsOver 100 laboratories took the opportunity to test the ‘educational reference sample’, showing a willingness to further validate their testing platforms. While it was encouraging to see that the most widely reported variants were those which should be included in routine testing panels, reporting of variants was potentially open to interpretation, thus clarity is still required on whether laboratories selectively reported variants, by either clinical relevance or variant frequency.


Sign in / Sign up

Export Citation Format

Share Document