scholarly journals Hummingbird–Plant Interactions Are More Specialized in Forest Compared to Coffee Plantations

Diversity ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 126
Author(s):  
Beth M. L. Morrison ◽  
Chase D. Mendenhall

Deforestation transforms habitats, displacing vertebrates and the other dimensions of biodiversity they support through their interactions. Few empirical studies have quantified the effect deforestation has on vertebrate–pollinator interaction networks. Here we quantify how hummingbird–plant networks change in relation to hummingbird diversity across a deforestation gradient. We found that, overall, hummingbird–plant interactions were significantly more specialized in forests and specialized interactions decayed rapidly with the loss of tree cover at small spatial scales. Hummingbird species interaction specialization was also higher in forest habitats compared to coffee plantations, but we found no support for a morphological hummingbird trait that predicted interaction specialization or forest dependence. Finally, we developed spatially explicit models for quantifying impacts of land-use decisions on hummingbird species and the biodiversity they support. These tools can be used to identify and prioritize important habitats for conservation activities, like creating new protected areas and improving agricultural lands for biodiversity.

The environment has always been a central concept for archaeologists and, although it has been conceived in many ways, its role in archaeological explanation has fluctuated from a mere backdrop to human action, to a primary factor in the understanding of society and social change. Archaeology also has a unique position as its base of interest places it temporally between geological and ethnographic timescales, spatially between global and local dimensions, and epistemologically between empirical studies of environmental change and more heuristic studies of cultural practice. Drawing on data from across the globe at a variety of temporal and spatial scales, this volume resituates the way in which archaeologists use and apply the concept of the environment. Each chapter critically explores the potential for archaeological data and practice to contribute to modern environmental issues, including problems of climate change and environmental degradation. Overall the volume covers four basic themes: archaeological approaches to the way in which both scientists and locals conceive of the relationship between humans and their environment, applied environmental archaeology, the archaeology of disaster, and new interdisciplinary directions.The volume will be of interest to students and established archaeologists, as well as practitioners from a range of applied disciplines.


2015 ◽  
Vol 6 (2) ◽  
pp. 1897-1937 ◽  
Author(s):  
Y. Li ◽  
N. de Noblet-Ducoudré ◽  
E. L. Davin ◽  
N. Zeng ◽  
S. Motesharrei ◽  
...  

Abstract. Previous modeling and empirical studies have shown that the biophysical impact of deforestation is to warm the tropics and cool the extra-tropics. In this study, we use an earth system model to investigate how deforestation at various spatial scales affects ground temperature, with an emphasis on the latitudinal temperature response and its underlying mechanisms. Results show that the latitudinal pattern of temperature response depends non-linearly on the spatial extent of deforestation and the fraction of vegetation change. Compared with regional deforestation, temperature change in global deforestation is greatly amplified in temperate and boreal regions, but is dampened in tropical regions. Incremental forest removal leads to increasingly larger cooling in temperate and boreal regions, while the temperature increase saturates in tropical regions. The latitudinal and spatial patterns of the temperature response are driven by two processes with competing temperature effects: decreases in absorbed shortwave radiation due to increased albedo and decreases in evapotranspiration. These changes in the surface energy balance reflect the importance of the background climate on modifying the deforestation impact. Shortwave radiation and precipitation have an intrinsic geographical distribution that constrains the effects of biophysical changes and therefore leads to temperature changes that are spatially varying. For example, wet (dry) climate favors larger (smaller) evapotranspiration change, thus warming (cooling) is more likely to occur. Further analysis on the contribution of individual biophysical factors (albedo, roughness, and evapotranspiration efficiency) reveals that the latitudinal signature embodied in the temperature change probably result from the background climate conditions rather than the initial biophysical perturbation.


2016 ◽  
Vol 7 (1) ◽  
pp. 167-181 ◽  
Author(s):  
Yan Li ◽  
Nathalie De Noblet-Ducoudré ◽  
Edouard L. Davin ◽  
Safa Motesharrei ◽  
Ning Zeng ◽  
...  

Abstract. Previous modeling and empirical studies have shown that the biophysical impact of deforestation is to warm the tropics and cool the extratropics. In this study, we use an earth system model of intermediate complexity to investigate how deforestation on various spatial scales affects ground temperature, with an emphasis on the latitudinal temperature response and its underlying mechanisms. Results show that the latitudinal pattern of temperature response depends nonlinearly on the spatial extent of deforestation and the fraction of vegetation change. Compared with regional deforestation, temperature change in global deforestation is greatly amplified in temperate and boreal regions but is dampened in tropical regions. Incremental forest removal leads to increasingly larger cooling in temperate and boreal regions, while the temperature increase saturates in tropical regions. The latitudinal and spatial patterns of the temperature response are driven by two processes with competing temperature effects: decrease in absorbed shortwave radiation due to increased albedo and decrease in evapotranspiration. These changes in the surface energy balance reflect the importance of the background climate in modifying the deforestation impact. Shortwave radiation and precipitation have an intrinsic geographical distribution that constrains the effects of biophysical changes and therefore leads to temperature changes that are spatially varying. For example, wet (dry) climate favors larger (smaller) evapotranspiration change; thus, warming (cooling) is more likely to occur. Our analysis reveals that the latitudinal temperature change largely results from the climate conditions in which deforestation occurs and is less influenced by the magnitude of individual biophysical changes such as albedo, roughness, and evapotranspiration efficiency.


2020 ◽  
Author(s):  
Eivind Flittie Kleiven ◽  
Frederic Barraquand ◽  
Olivier Gimenez ◽  
John-André Henden ◽  
Rolf Anker Ims ◽  
...  

1AbstractOccupancy models have been developed independently to account for multiple spatial scales and species interactions in a dynamic setting. However, as interacting species (e.g., predators and prey) often operate at different spatial scales, including nested spatial structure might be especially relevant in models of interacting species. Here we bridge these two model frameworks by developing a multi-scale two-species occupancy model. The model is dynamic, i.e. it estimates initial occupancy, colonization and extinction probabilities - including probabilities conditional to the other species’ presence. With a simulation study, we demonstrate that the model is able to estimate parameters without bias under low, medium and high average occupancy probabilities, as well as low, medium and high detection probabilities. We further show the model’s ability to deal with sparse field data by applying it to a multi-scale camera trapping dataset on a mustelid-rodent predator-prey system. The field study illustrates that the model allows estimation of species interaction effects on colonization and extinction probabilities at two spatial scales. This creates opportunities to explicitly account for the spatial structure found in many spatially nested study designs, and to study interacting species that have contrasted movement ranges with camera traps.


ISRN Ecology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Tim J. B. Carruthers ◽  
Shawn L. Carter ◽  
Todd R. Lookingbill ◽  
Lisa N. Florkowski ◽  
Jane M. Hawkey ◽  
...  

Progress in achieving desired environmental outcomes needs to be rigorously measured and reported for effective environmental management. Two major challenges in achieving this are, firstly, how to synthesize monitoring data in a meaningful way at appropriate temporal and spatial scales and, secondly, how to present results in a framework that allows for effective communication to resource managers and scientists as well as a broader general audience. This paper presents a habitat framework, developed to assess the natural resource condition of the urban Rock Creek Park (Washington, DC, USA), providing insight on how to improve future assessments. Vegetation and stream GIS layers were used to classify three dominant habitat types, Forest, Wetland, and Artificial-terrestrial. Within Rock Creek Park, Forest habitats were assessed as being in good condition (67% threshold attainment of desired condition), Wetland habitats to be in fair condition (49% attainment), and Artificial-terrestrial habitats to be in degraded condition (26% attainment), resulting in an assessed fair/good condition (60% attainment; weighted by habitat area) for all natural resources in Rock Creek Park. This approach has potential to provide assessment of resource condition for diverse ecosystems and provides a basis for addressing management questions across multiple spatial scales.


2021 ◽  
Author(s):  
◽  
Rio Yonson

<p>Some of the world’s most destructive disasters occurred in the Philippines, and a number of these happened in recent years. In 2011, 2012, and 2013, tropical cyclones Washi, Bopha, and Haiyan, respectively, left a staggering trail of over 8,000 deaths, as well as huge damages to assets and livelihoods. In 2009, tropical cyclones Ketsana and Pharma brought massive riverine floods, with a total damage and loss equivalent to 2.7% of the country’s GDP. This dissertation is an endeavour to measure disaster impacts and welfare risk, and to identify factors affecting vulnerability and resilience in different spatial scales in the Philippines. The first of four chapters is an extensive literature survey on the economic vulnerability and economic resilience to disasters. This serves as a prelude to the succeeding three empirical studies contained in Chapters 3 to 5. Chapter 3 aims to measure tropical cyclone-induced fatalities in the Philippine provinces, and identifies the factors that shape people’s vulnerability. It also quantifies the relative importance of hazard, exposure, and socioeconomic vulnerability in influencing fatalities. Chapter 4 is a household level study that quantitatively establishes the linkages between floods and diseases in the floodplains of a highly-urbanized city in the Philippines (Cagayan de Oro), and provides an estimate on the public finance implications of flood-induced diseases to the Philippine urban areas, and on the additional economic burden on affected households. Chapter 5 measures socioeconomic resilience and welfare risk from riverine flood disasters, and systematically quantifies the effectiveness of a menu of region-specific disaster risk reduction and management measures.</p>


Author(s):  
Mark A. McPeek

This book develops a unified framework for understanding the structure of ecological community and the dynamics of natural selection that shape the evolution of the species inhabiting them. All species engage in interactions with many other species, and these interactions regulate their abundance, define their trajectories of natural selection, and shape their movement decisions. This book synthesizes the ecological and evolutionary dynamics generated by species interactions that structure local biological communities and regional metacommunities. The book explores the ecological performance characteristics needed for invasibility and coexistence of species in complex networks of species interactions. This species interaction framework is then extended to examine the ecological dynamics of natural selection that drive coevolution of interacting species in these complex interaction networks. The models of natural selection resulting from species interactions are used to evaluate the ecological conditions that foster diversification at multiple trophic levels. Analyses show that diversification depends on the ecological context in which species interactions occur and the types of traits that define the mechanisms of those species interactions. Lastly, looking at the mechanisms of speciation that affect species richness and diversity at various spatial scales and the consequences of past climate change over the Quaternary period, the book considers how metacommunity structure is shaped at regional and biogeographic scales. Integrating evolutionary theory into the study of community ecology, the book provides a new framework for predicting how communities are organized and how they may change over time.


2020 ◽  
Vol 13 (4) ◽  
pp. 431-441 ◽  
Author(s):  
Xin Jing ◽  
Case M Prager ◽  
Aimée T Classen ◽  
Fernando T Maestre ◽  
Jin-Sheng He ◽  
...  

Abstract Aims Biodiversity is often positively related to the capacity of an ecosystem to provide multiple functions simultaneously (i.e. multifunctionality). However, there is some controversy over whether biodiversity–multifunctionality relationships depend on the number of functions considered. Particularly, investigators have documented contrasting findings that the effects of biodiversity on ecosystem multifunctionality do not change or increase with the number of ecosystem functions. Here, we provide some clarity on this issue by examining the statistical underpinnings of different multifunctionality metrics. Methods We used simulations and data from a variety of empirical studies conducted across spatial scales (from local to global) and biomes (temperate and alpine grasslands, forests and drylands). We revisited three methods to quantify multifunctionality including the averaging approach, summing approach and threshold-based approach. Important Findings Biodiversity–multifunctionality relationships either did not change or increased as more functions were considered. These results were best explained by the statistical underpinnings of the averaging and summing multifunctionality metrics. Specifically, by averaging the individual ecosystem functions, the biodiversity–multifunctionality relationships equal the population mean of biodiversity-single function relationships, and thus will not change with the number of functions. Likewise, by summing the individual ecosystem functions, the strength of biodiversity–multifunctionality relationships increases as the number of functions increased. We proposed a scaling standardization method by converting the averaging or summing metrics into a scaling metric, which would make comparisons among different biodiversity studies. In addition, we showed that the range-relevant standardization can be applied to the threshold-based approach by solving for the mathematical artefact of the approach (i.e. the effects of biodiversity may artificially increase with the number of functions considered). Our study highlights different approaches yield different results and that it is essential to develop an understanding of the statistical underpinnings of different approaches. The standardization methods provide a prospective way of comparing biodiversity–multifunctionality relationships across studies.


2018 ◽  
Author(s):  
Jonathan M. Chase ◽  
Brian J. McGill ◽  
Daniel J. McGlinn ◽  
Felix May ◽  
Shane A. Blowes ◽  
...  

AbstractBecause biodiversity is multidimensional and scale-dependent, it is challenging to estimate its change. However, it is unclear (1) how much scale-dependence matters for empirical studies, and (2) if it does matter, how exactly we should quantify biodiversity change. To address the first question, we analyzed studies with comparisons among multiple assemblages, and found that rarefaction curves frequently crossed, implying reversals in the ranking of species richness across spatial scales. Moreover, the most frequently measured aspect of diversity—species richness—was poorly correlated with other measures of diversity. Second, we collated studies that included spatial scale in their estimates of biodiversity change in response to ecological drivers and found frequent and strong scale-dependence, including nearly 10% of studies which showed that biodiversity changes switched directions across scales. Having established the complexity of empirical biodiversity comparisons, we describe a synthesis of methods based on rarefaction curves that allow more explicit analyses of spatial and sampling effects on biodiversity comparisons. We use a case study of nutrient additions in experimental ponds to illustrate how this multi-dimensional and multi-scale perspective informs the responses of biodiversity to ecological drivers.Statement of AuthorshipJC and BM conceived the study and the overall approach, and all authors participated in multiple working group meetings to develop and refine the approach. BM collected the data for the meta-analysis that led to Fig. 2,3; JC collected the data for the metaanalysis that led to Figure 4 and S1; SB and FM did the analyses for Figures 2-4; DM, FM and XX wrote the code for the analysis used for the recipe and case study in Figure 6. JC, BM and NG wrote first drafts of most sections, and all authors contributed substantially to revisions.Figure 1.A. Individual-based rarefaction curves of three hypothetical communities (labelled A,B, C) where ranked differences between communities are consistent across scales. B. Individual-based rarefaction curves of three hypothetical communities (labelled A,B, C) where rankings between communities switch because of differences in the total numbers of species, and their relative abundances. Dotted vertical lines illustrate sampling scales where rankings switch. These curves were generated using the sim_sad function from the mobsim R package (May et al. 2018).Figure 2.Bivariate relationships between N, SPIE and S for 346 communities across the 37 datasets taken from McGill (2011b)(see Appendix 1). (A) S as a function of N; (B) S as a function of SPIE. (N vs SPIE not shown). Black lines depict the relationships across studies (and correspond to R2 fixed); colored points and lines show the relationships within studies. All axes are log-scale. Insets are histograms of the study-level slopes, with the solid line representing the slope across all studies. Gray bars indicate the study-level slope did not differ from zero, blue indicates a significant positive slope, and red indicates a significant negative slope.Figure 3.Representative rarefaction curves, the proportion of curves that crossed, and counts of how often curves crossed. (A) Rarefaction curves for different local communities within two datasets: marine invertebrates (nematodes) along a gradient from a waste plant outlet (Lambshead 1986), and trees in a Ugandan rainforest (Eggeling 1947); axes are log-transformed. (B) Counts of how many times pairs of rarefaction curves (from the same community) crossed; y-axis is on a log-scale.Data accessibility statementAll data for meta-analyses and case study will be deposited in a publically available repository with DOI upon acceptance (available in link for submission).


Author(s):  
Ciro Cabal ◽  
Ricardo Martínez-García ◽  
Fernando Valladares

Ecologists use the net biotic interactions among plants as a major factor to predict other ecosystem features, such as species diversity, community structure, or plant atmospheric carbon uptake. By adopting this approach, ecologists have built a giant body of theory founded on observational evidence. However, growing evidence points out that this may not be the right approach. The literature addressing the biophysical mechanisms underlying the plant interactions is much scarcer. A rising number of scientists claim the need for a mechanistic understanding of plant interactions due to the limitations that a phenomenological approach raises both in empirical and theoretical studies. Scattered studies have recently taken such a mechanistic approach, but we still lack a general theoretical framework to study mechanistically plant interactions. In this review, we first recapitulate the elementary units of plant interactions, i.e., all the known biophysical processes affected by the presence of an influencing plant and the possible phenotypic responses of plants influenced by those processes. Second, we discuss how a net interaction between two plants emerges from the simultaneous effect of these elementary units. Third, we touch upon the spatial and temporal variability of the net interaction and discuss the links between this variability and the underlying biophysical processes. We conclude by discussing how to integrate these processes into a mechanistic framework for plant interactions that must necessarily focus on the individual scale and explicitly incorporate the spatial structure of the community and environmental factors: the plant interaction models (PIM). A PIM incorporates a pair or few plants interacting with their physical environment so that the biotic interaction is not imposed but emerges from the model. This type of model can provide concise, mechanistic hypotheses to be tested empirically. This review calls for a paradigm shift in the ecology of plant interactions, from the classic species interaction study towards a more mechanistic individual-level approach. It also presents a comprehensive foundation for studying the mechanisms underpinning the net interaction between two plants.


Sign in / Sign up

Export Citation Format

Share Document