scholarly journals Dispersal of Silica-Scaled Chrysophytes in Northern Water Bodies

Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 284
Author(s):  
Anna Bessudova ◽  
Yurij Bukin ◽  
Yelena Likhoshway

Silica-scaled chrysophytes have an ancient origin; nowadays they inhabit many northern water bodies. As the territories above the 60th parallel north were under the influence of glaciers during the Late Pleistocene, the local water bodies and their microalgal populations formed mainly during the Early Holocene. Now, the arctic, sub-arctic and temperate zones are located here and the water bodies in these regions have varying environmental characteristics. We analyzed the dispersal of silica-scaled chrysophytes in 193 water bodies in 21 northern regions, and for 135 of them determined the role of diverse environmental factors in their species composition and richness using statistical methods. Although the species composition and richness certainly depend on water body location, water temperature and conductivity, regions and individual water bodies with similar species composition can be significantly distant in latitudinal direction. Eighteen species and one variety from 165 taxa occurring here have clear affinities to fossil congeners; they have been encountered in all regions studied and amount to 6–54% of the total number of silica-scaled chrysophytes. We also compared the distribution of the species with a reconstruction of glacier-dammed lakes in the Northern Hemisphere in the Late Pleistocene–Early Holocene. The dispersal of silica-scaled chrysophytes in the northern water bodies could take place in the Late Pleistocene–Early Holocene over the circumpolar freshwater network of glacier-dammed lakes, the final Protista composition being subject to the environmental parameters of each individual water body and the region where the water body is located. This species dispersal scenario can also be valid for other microscopic aquatic organisms as well as for southerly water bodies of the Northern Hemisphere.

2021 ◽  
Vol 6 (3) ◽  
pp. 15-28
Author(s):  
S. S. Barinova ◽  
V. A. Gabyshev ◽  
A. P. Ivanova ◽  
O. I. Gabysheva

The Lena River in the Laptev Sea forms a vast delta, one of the largest in the world. The Ust-Lensky State Nature Reserve saves biodiversity on the Lena Delta territory beyond the Arctic Circle, in the zone of continuous permafrost. In recent years, large-scale plans for the development of extractive industries are implemented in this Russian Arctic sector. In this regard, the study of biodiversity and bioindication properties of aquatic organisms in the Lena River estuary area is becoming more and more relevant. This study aims to identify the species composition of microalgae in lotic and lentic water bodies of the Lena River Delta and use their indicator property for water salinity. It was a trace indicator of species distribution over the delta and their dynamics along the delta main watercourses to assess the impact of river waters on the Laptev Sea coastal areas. For this, all previously published materials on algae and chemical composition of the region waters as well as data obtained in recent years for the waters of the lower Lena reach were involved. In total, 700 species considered to 10 phyla were analyzed: Cyanobacteria (83), Euglenozoa (13), Ochrophyta (Chrysophyta, Xanthophyta) (41), Eustigmatophyta (4), Bacillariophyta (297), Miozoa (20), Cryptophyta (3), Rhodophyta (1), Chlorophyta (125), and Charophyta (111). The available materials of the field and reference observations were analyzed using several statistical methods. The study results indicate that hydrological conditions are the main factor regulating the spatial structure of the species composition of the microalgae communities in the Lena River Delta. The distribution of groups of salinity indicators across flowing water bodies reflects the effect of water salinity, and this allows suggesting possible sources of this effect. The mechanism of tracking the distribution of environmental indicators itself is a sensitive method, that reveals even their subtle changes in them; therefore, as an integral method, it can be helpful for further monitoring.


2004 ◽  
Vol 41 (4) ◽  
pp. 387-399 ◽  
Author(s):  
Ian Clark ◽  
Bernard Lauriol ◽  
Mark Marschner ◽  
Nicolas Sabourin ◽  
Yanie Chauret ◽  
...  

A remarkable biogenic calcite precipitate forms carpets of finely laminated ~1 mm diameter columns lining fissures within limestone bedrock in the permafrost regions of the northern Yukon. This material, "endostromatolite," for its laminated morphology and growth hidden within the carbonate rock, is ubiquitous within limestone terrains of the Arctic and grew during the early Holocene hypsithermal. Dissolution on the interior fissure faces is accompanied by biomineralization of the opposing faces; a previously unrecognized weathering process in permafrost regions. Occurrence is restricted to outcrops with a southern orientation in permafrost regions, in this case, from the Ogilvie Mountains, northern Yukon. Growth occurs in water-saturated talik during periods of permafrost degradation during insolation maxima. Their enriched δ13C values (–1.7‰ to 11.4‰) are generated in a methanogenic environment during anaerobic degradation of soil-derived organic carbon. A paleotemperature signal extracted from the δ18O values demonstrates that growth occurred during a hypsithermal period with an average summer air temperature 7 ± 2 °C higher than today. Corrected radiocarbon age measurements of the calcite and organic matter preserved within the endostromatolites indicate that biomineralization occurred during the late Pleistocene – early Holocene hypsithermal event. Profiles along the columns document late Pleistocene climate improvement, with maximum warmth coincident with the insolation maximum for 65°N, followed by cooling and end of growth in the mid to late Holocene.


2013 ◽  
Vol 9 (6) ◽  
pp. 2651-2667 ◽  
Author(s):  
M. Blaschek ◽  
H. Renssen

Abstract. Glacial terminations are characterized by a strong rise in sea level related to melting ice sheets. This rise in sea level is not uniform all over the world, because regional effects (uplift and subsidence of coastal zones) are superimposed on global trends. During the early Holocene the Siberian Shelf became flooded before 7.5 ka BP and the coastline reached modern-day high stands at 5 ka BP. This area is currently known as a sea-ice production area and contributes significantly to the sea-ice exported from the Arctic through the Fram Strait. This leads to the following hypothesis: during times of rising sea levels, shelves become flooded, increasing sea-ice production on these shelves, increasing sea-ice volume and export through the Fram Strait and causing the sea-ice extent to advance in the Nordic Seas, yielding cooler and fresher sea surface conditions. We have tested this hypothesis in an atmosphere–ocean–sea–ice coupled model of intermediate complexity (LOVECLIM). Our experiment on early Holocene Siberian Shelf flooding shows that in our model sea-ice production in the Northern Hemisphere increases (15%) and that sea-ice extent in the Northern Hemisphere increases (14%) but sea-ice export decreases (−15%) contrary to our hypothesis. The reason of this unexpected behaviour has its origin in a weakened polar vortex, induced by the land–ocean changes due to the shelf flooding, and a resulting decrease of zonality in the Nordic Seas pressure regime. Hence the winter Greenland high and the Icelandic low strengthen, yielding stronger winds on both sides of the Nordic Seas. Increased winds along the East Greenland Current support local sea-ice production and transport towards the South, resulting in a wider sea-ice cover and a southward shift of convection areas. The overall strength of the Atlantic meridional overturning circulation is reduced by 4% and the heat transport in the Atlantic basin by 7%, resulting in an annual cooling pattern over the Nordic Seas by up to −4 °C. We find that the flooding of the Siberian shelf resulting from an orbitally induced warming and related glacioeustatic sea level rise causes a Nordic Seas cooling feedback opposed to this warming.


2014 ◽  
Vol 25 (1-2) ◽  
pp. 61-68 ◽  
Author(s):  
V. I. Monchenko ◽  
L. P. Gaponova ◽  
V. R. Alekseev

Crossbreeding experiments were used to estimate cryptic species in water bodies of Ukraine and Russia because the most useful criterion in species independence is reproductive isolation. The problem of cryptic species in the genus Eucyclops was examined using interpopulation crosses of populations collected from Baltic Sea basin (pond of Strelka river basin) and Black Sea basin (water-reservoires of Dnieper, Dniester and Danube rivers basins). The results of reciprocal crosses in Eucyclops serrulatus-group are shown that E. serrulatus from different populations but from water bodies belonging to the same river basin crossed each others successfully. The interpopulation crosses of E. serrulatus populations collected from different river basins (Dnipro, Danube and Dniester river basins) were sterile. In this group of experiments we assigned evidence of sterility to four categories: 1) incomplete copulation or absence of copulation; 2) nonviable eggs; 3) absence of egg membranes or egg sacs 4) empty egg membranes. These crossbreeding studies suggest the presence of cryptic species in the E. serrulatus inhabiting ecologically different populations in many parts of its range. The same crossbreeding experiments were carries out between Eucyclops serrulatus and morphological similar species – Eucyclops macruroides from Baltic and Black Sea basins. The reciprocal crossings between these two species were sterile. Thus taxonomic heterogeneity among species of genus Eucyclops lower in E. macruroides than in E. serrulatus. The interpopulation crosses of E. macruroides populations collected from distant part of range were fertile. These crossbreeding studies suggest that E. macruroides species complex was evaluated as more stable than E. serrulatus species complex.


1989 ◽  
Vol 21 (12) ◽  
pp. 1821-1824
Author(s):  
M. Suzuki ◽  
K. Chihara ◽  
M. Okada ◽  
H. Kawashima ◽  
S. Hoshino

A computer program based on expert system software was developed and proposed as a prototype model for water management to control eutrophication problems in receiving water bodies (Suzuki etal., 1988). The system has several expert functions: 1. data input and estimation of pollution load generated and discharged in the river watershed; 2. estimation of pollution load run-off entering rivers; 3. estimation of water quality of receiving water bodies, such as lakes; and 4. assisting man-machine dialog operation. The program can be used with MS-DOS BASIC and assembler in a 16 bit personal computer. Five spread sheets are utilized in calculation and summation of the pollutant load, using multi-windows. Partial differential equations for an ecological model for simulation of self-purification in shallow rivers and simulation of seasonal variations of water quality in a lake were converted to computer programs and included in the expert system. The simulated results of water quality are shown on the monitor graphically. In this study, the expert system thus developed was used to estimate the present state of one typical polluted river basin. The river was the Katsura, which flows into Lake Sagami, a lake dammed for water supply. Data which had been actually measured were compared with the simulated water quality data, and good agreement was found. This type of expert system is expected to be useful for water management of a closed water body.


Sign in / Sign up

Export Citation Format

Share Document