Endostromatolites from permafrost karst, Yukon, Canada: paleoclimatic proxies for the Holocene hypsithermal

2004 ◽  
Vol 41 (4) ◽  
pp. 387-399 ◽  
Author(s):  
Ian Clark ◽  
Bernard Lauriol ◽  
Mark Marschner ◽  
Nicolas Sabourin ◽  
Yanie Chauret ◽  
...  

A remarkable biogenic calcite precipitate forms carpets of finely laminated ~1 mm diameter columns lining fissures within limestone bedrock in the permafrost regions of the northern Yukon. This material, "endostromatolite," for its laminated morphology and growth hidden within the carbonate rock, is ubiquitous within limestone terrains of the Arctic and grew during the early Holocene hypsithermal. Dissolution on the interior fissure faces is accompanied by biomineralization of the opposing faces; a previously unrecognized weathering process in permafrost regions. Occurrence is restricted to outcrops with a southern orientation in permafrost regions, in this case, from the Ogilvie Mountains, northern Yukon. Growth occurs in water-saturated talik during periods of permafrost degradation during insolation maxima. Their enriched δ13C values (–1.7‰ to 11.4‰) are generated in a methanogenic environment during anaerobic degradation of soil-derived organic carbon. A paleotemperature signal extracted from the δ18O values demonstrates that growth occurred during a hypsithermal period with an average summer air temperature 7 ± 2 °C higher than today. Corrected radiocarbon age measurements of the calcite and organic matter preserved within the endostromatolites indicate that biomineralization occurred during the late Pleistocene – early Holocene hypsithermal event. Profiles along the columns document late Pleistocene climate improvement, with maximum warmth coincident with the insolation maximum for 65°N, followed by cooling and end of growth in the mid to late Holocene.

2015 ◽  
Vol 9 (1) ◽  
pp. 77-114 ◽  
Author(s):  
M. Fritz ◽  
T. Opel ◽  
G. Tanski ◽  
U. Herzschuh ◽  
H. Meyer ◽  
...  

Abstract. Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have been accumulated in late Pleistocene and Holocene unconsolidated deposits. Their vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change is largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements, which are important for ecosystems and carbon cycling. Here we show, using geochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage with a maximum of 28.6 mg L−1 (mean: 9.6 mg L−1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly stored in ground ice, especially in ice wedges, even before further degradation. In the Yedoma region ice wedges represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a fresh-water reservoir of 4172 km3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.


2015 ◽  
Vol 9 (2) ◽  
pp. 737-752 ◽  
Author(s):  
M. Fritz ◽  
T. Opel ◽  
G. Tanski ◽  
U. Herzschuh ◽  
H. Meyer ◽  
...  

Abstract. Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg L−1 (mean: 9.6 mg L−1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km2. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 284
Author(s):  
Anna Bessudova ◽  
Yurij Bukin ◽  
Yelena Likhoshway

Silica-scaled chrysophytes have an ancient origin; nowadays they inhabit many northern water bodies. As the territories above the 60th parallel north were under the influence of glaciers during the Late Pleistocene, the local water bodies and their microalgal populations formed mainly during the Early Holocene. Now, the arctic, sub-arctic and temperate zones are located here and the water bodies in these regions have varying environmental characteristics. We analyzed the dispersal of silica-scaled chrysophytes in 193 water bodies in 21 northern regions, and for 135 of them determined the role of diverse environmental factors in their species composition and richness using statistical methods. Although the species composition and richness certainly depend on water body location, water temperature and conductivity, regions and individual water bodies with similar species composition can be significantly distant in latitudinal direction. Eighteen species and one variety from 165 taxa occurring here have clear affinities to fossil congeners; they have been encountered in all regions studied and amount to 6–54% of the total number of silica-scaled chrysophytes. We also compared the distribution of the species with a reconstruction of glacier-dammed lakes in the Northern Hemisphere in the Late Pleistocene–Early Holocene. The dispersal of silica-scaled chrysophytes in the northern water bodies could take place in the Late Pleistocene–Early Holocene over the circumpolar freshwater network of glacier-dammed lakes, the final Protista composition being subject to the environmental parameters of each individual water body and the region where the water body is located. This species dispersal scenario can also be valid for other microscopic aquatic organisms as well as for southerly water bodies of the Northern Hemisphere.


2018 ◽  
Author(s):  
Stephanie Coulombe ◽  
Daniel Fortier ◽  
Denis Lacelle ◽  
Mikhail Kanevskiy ◽  
Yuri Shur

Abstract. Over the past decades, observations of buried glacier ice exposed in coastal bluffs and headwalls of retrogressive thaw slumps of the Arctic indicate that considerable amounts of Pleistocene glacier ice survived the deglaciation and are still preserved in permafrost. In exposures, relict glacier ice and intrasedimental ice often coexist and look alike but their genesis is strikingly different. Identifying the origin of ground ice is required to model its spatial distribution and abundance, which is necessary to model the response of circumpolar permafrost regions to climate change. This paper aims to present a detailed description and report physical and geochemical properties of glacier ice buried in the permafrost of Bylot Island (Nunavut) as well as identify geomorphic processes that led to the burial and preservation of the ice. The massive ice exposure and core samples were described according to the cryostratigraphic approach, combining the analysis of permafrost cryofacies and cryostructures, ice crystallography, stable O-H isotopes and cation contents. The buried glacier ice consisted of clear to whitish englacial ice having large crystals (cm) and small gas inclusions (mm) at crystal intersections, similar to observations of englacial ice facies commonly found on contemporary glaciers and ice sheets. However, the isotopic composition of the buried ice differed markedly from contemporary glacier ice and indicated the late Pleistocene age of the ice. This ice predates the aggradation of the permafrost and can be used as an archive to infer paleo-environmental conditions at the study site. As most of the arctic landscapes are still strongly determined by its glacial legacy, the melting of these large ice bodies could lead to extensive slope failures and settlement of the ground surface, with significant impact on permafrost geosystem landscape dynamics, terrestrial and aquatic ecosystems, and infrastructure.


Author(s):  
Nataliya Belova ◽  
Nataliya Belova ◽  
Alisa Baranskaya ◽  
Alisa Baranskaya ◽  
Osip Kokin ◽  
...  

The coasts of Baydaratskaya Bay are composed by loose frozen sediments. At Yamal Peninsula accumulative coasts are predominant at the site where pipeline crosses the coast, while thermoabrasional coast are prevail at the Ural coast crossing site. Coastal dynamics monitoring on both sites is conducted using field and remote methods starting from the end of 1980s. As a result of construction in the coastal zone the relief morphology was disturbed, both lithodynamics and thermal regime of the permafrost within the areas of several km around the sites where gas pipeline crosses coastline was changed. At Yamal coast massive removal of deposits from the beach and tideflat took place. The morphology of barrier beach, which previously was a natural wave energy dissipater, was disturbed. This promoted inland penetration of storm surges and permafrost degradation under the barrier beach. At Ural coast the topsoil was disrupted by construction trucks, which affected thermal regime of the upper part of permafrost and lead to active layer deepening. Thermoerosion and thermoabrasion processes have activated on coasts, especially at areas with icy sediments, ice wedges and massive ice beds. Construction of cofferdams resulted in overlapping of sediments transit on both coasts and caused sediment deficit on nearby nearshore zone areas. The result of technogenic disturbances was widespread coastal erosion activation, which catastrophic scale is facilitated by climate warming in the Arctic.


2021 ◽  
Vol 267 ◽  
pp. 107109
Author(s):  
Zaibao Yang ◽  
Yanli Lei ◽  
Yair Rosenthal ◽  
Tiegang Li ◽  
Zhimin Jian

Sign in / Sign up

Export Citation Format

Share Document