scholarly journals Applying Population Viability Analysis to Inform Genetic Rescue That Preserves Locally Unique Genetic Variation in a Critically Endangered Mammal

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 382
Author(s):  
Joseph P. Zilko ◽  
Dan Harley ◽  
Alexandra Pavlova ◽  
Paul Sunnucks

Genetic rescue can reduce the extinction risk of inbred populations, but it has the poorly understood risk of ‘genetic swamping’—the replacement of the distinctive variation of the target population. We applied population viability analysis (PVA) to identify translocation rates into the inbred lowland population of Leadbeater’s possum from an outbred highland population that would alleviate inbreeding depression and rapidly reach a target population size (N) while maximising the retention of locally unique neutral genetic variation. Using genomic kinship coefficients to model inbreeding in Vortex, we simulated genetic rescue scenarios that included gene pool mixing with genetically diverse highland possums and increased the N from 35 to 110 within ten years. The PVA predicted that the last remaining population of lowland Leadbeater’s possum will be extinct within 23 years without genetic rescue, and that the carrying capacity at its current range is insufficient to enable recovery, even with genetic rescue. Supplementation rates that rapidly increased population size resulted in higher retention (as opposed to complete loss) of local alleles through alleviation of genetic drift but reduced the frequency of locally unique alleles. Ongoing gene flow and a higher N will facilitate natural selection. Accordingly, we recommend founding a new population of lowland possums in a high-quality habitat, where population growth and natural gene exchange with highland populations are possible. We also recommend ensuring gene flow into the population through natural dispersal and/or frequent translocations of highland individuals. Genetic rescue should be implemented within an adaptive management framework, with post-translocation monitoring data incorporated into the models to make updated predictions.

1993 ◽  
Vol 20 (1) ◽  
pp. 67 ◽  
Author(s):  
DB Lindenmayer ◽  
RC Lacy ◽  
VC Thomas ◽  
TW Clark

Population Viability Analysis (PVA) uses computer modelling to simulate interacting deterministic and stochastic factors (e.g. demographic, genetic, spatial, environmental and catastrophic processes) that act on small populations and assess their long-term vulnerability to extinction. The computer program VORTEX was used in a PVA of Leadbeater's possum, Gymnobelideus leadbeateri McCoy, an endangered arboreal marsupial that is restricted to the montane ash forests of the central highlands of Victoria. PVA was used to examine the impacts of changes in the size of subpopulations and the effects of environmental variation. Our analyses demonstrated that an annual linear decline in the carrying capacity in all or parts of the habitat will lead to the extinction of G. leadbeateri in those areas. Mean time to extinction was related to the rate of annual decrease. This conclusion is of practical and management importance as there is presently a decline in suitable habitat because of an annual loss of more than 3.5% of trees with hollows, which provide nest sites for G. leadbeateri. Because nest sites are a factor that limits populations of G. leadbeateri, the species could be lost from large areas within the next 50 years. PVA was also used to determine the viability of populations in areas, such as oldgrowth forest, where there is not likely to be a steady decline in habitat carrying capacity resulting from the loss of trees with hollows. This allowed an analysis of the cumulative impacts of small population size, environmental variation and genetic factors, which showed that, for a 100-year projection, simulated populations of 200 animals or more remained demographically stable and experienced a less than 10% decline in predicted genetic variability. However, the relatively simplified nature of population modelling and the suite of assumptions that underpin VORTEX mean that the probability of extinction of populations of this size may be greater than determined in this study. As a result, it is possible that only populations of more than 200 animals may persist in the long term where suitable habitat can be conserved or established and subsequently maintained without a reduction in carrying capacity.


2007 ◽  
Vol 17 (2) ◽  
pp. 151-161 ◽  
Author(s):  
Yanyun Zhang ◽  
Guangmei Zheng

AbstractUnderstanding the status of fragmented populations and predicting their fate is an increasingly important part of bird conservation. Population viability analysis (PVA) can help in this process and is widely used for assessing the extinction risk faced by threatened species and for finding the key factors affecting population status and survival prospects. From 1982 to 2004, 14 scientists studied the population of the globally threatened Cabot's Tragopan Tragopan caboti in Wuyanling National Natural Reserve (WNNR), south-east China and collected life-history data on the population. Using VORTEX, we analysed the viability of the population in the reserve and this predicted that the population size will increase for the next 50 years and will then show a very slight decline for the next 50 years. The loss of heterozygosity is predicted to be 14%, suggesting that the population may not be viable in the long term. Sensitivity analyses showed that nest loss is the most important factor affecting population size and the survival probability of the population, which is supported by field studies. Though the new evidence shows that Cabot's Tragopan can build nests in spruce forest successfully, broad-leaf forest is still necessary for them for foraging, especially at some times of the year. The simulation also shows that the probability of survival and the size of the population will decrease markedly if the extent of suitable habitat is reduced even relatively slowly (such as 0.1% per year). Overall, we conclude that the PVA has provided very informative guidance to future management and research on Cabot's Tragopan at Wuyanling National Nature Reserve.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yashuai Zhang ◽  
Fang Wang ◽  
Zhenxia Cui ◽  
Min Li ◽  
Xia Li ◽  
...  

Abstract Background One of the most challenging tasks in wildlife conservation and management is clarifying which and how external and intrinsic factors influence wildlife demography and long-term viability. The wild population of the Crested Ibis (Nipponia nippon) has recovered to approximately 4400, and several reintroduction programs have been carried out in China, Japan and Korea. Population viability analysis on this endangered species has been limited to the wild population, showing that the long-term population growth is restricted by the carrying capacity and inbreeding. However, gaps in knowledge of the viability of the reintroduced population and its drivers in the release environment impede the identification of the most effective population-level priorities for aiding in species recovery. Methods The field monitoring data were collected from a reintroduced Crested Ibis population in Ningshan, China from 2007 to 2018. An individual-based VORTEX model (Version 10.3.5.0) was used to predict the future viability of the reintroduced population by incorporating adaptive patterns of ibis movement in relation to catastrophe frequency, mortality and sex ratio. Results The reintroduced population in Ningshan County is unlikely to go extinct in the next 50 years. The population size was estimated to be 367, and the population genetic diversity was estimated to be 0.97. Sensitivity analysis showed that population size and extinction probability were dependent on the carrying capacity and sex ratio. The carrying capacity is the main factor accounting for the population size and genetic diversity, while the sex ratio is the primary factor responsible for the population growth trend. Conclusions A viable population of the Crested Ibis can be established according to population viability analysis. Based on our results, conservation management should prioritize a balanced sex ratio, high-quality habitat and low mortality.


2017 ◽  
Author(s):  
Mark A Linnell ◽  
Katie Moriarty ◽  
David S Green ◽  
Taal Levi

Pacific martens (Martes caurina) in coastal forests of Oregon and northern California in the United States are rare and geographically isolated, prompting a petition for listing under the Endangered Species Act. If listed, regulations have the potential to substantially influence land-use decisions and forestry on public and private lands, but no estimates of population size, density, and viability of remnant marten populations are available for evaluating their conservation status. We used GPS telemetry, territory mapping, and spatial mark-recapture to estimate population size and density within the current extent of Pacific martens in central Oregon, within coastal forest in the Oregon dunes national recreational area. We then estimated population viability at differing levels of human-caused mortality (e.g. roadkill). We estimated 63 adult martens (95% Credible Interval: 58-73) and 73 (range: 46-91) potential territories across two subpopulations separated by a large barrier (Umpqua River). Marten density was 1.02 per km2, the highest reported in North America. Using population viability analysis, extinction risk for a subpopulation of 30 martens ranged from 34% to 100% with two or more annual human-caused mortalities. Absent broad-scale restoration of forest to conditions which support marten populations, limiting human-caused mortalities would likely have the greatest conservation impact.


Author(s):  
Morten Hertz ◽  
Iben Ravnborg Jensen ◽  
Laura Østergaard Jensen ◽  
Iben Vejrum Nielsen ◽  
Jacob Winde ◽  
...  

SummaryMany domestic breeds face challenges concerning genetic variability, because of their small population sizes along with a high risk of inbreeding. Therefore, it is important to obtain knowledge on their extinction risk, along with the possible benefits of certain breeding strategies. Since many domestic breeds face the same problems, results from such studies can be applied across breeds and species. Here a Population Viability Analysis (PVA) was implemented to simulate the future probability of extinction for a population of the endangered Danish Jutland cattle (Bos taurus), based on the software Vortex. A PVA evaluates the extinction risk of a population by including threats and demographic values. According to the results from the PVA the population will go extinct after 122 years with the current management. Four scenarios were created to investigate which changes in the breeding scheme would have the largest effect on the survival probabilities, including Scenario 1: More females in the breeding pool, scenario 2: More males in the breeding pool, scenario 3: Increased carrying capacity, and scenario 4: Supplementing males to the population through artificial insemination using semen from bulls used in the populations in past generations. All scenarios showed a positive effect on the population's probability of survival, and with a combination of the different scenarios, the population size seems to be stabilized.


1999 ◽  
Vol 5 (1) ◽  
pp. 56 ◽  
Author(s):  
Stephen M. Jackson

The population viability analysis (PVA) program VORTEX was used to examine the viability of different sized populations of the Mahogany Glider Petaurus gracilis, and to examine the impact of a one in a hundred year catastrophe (each requiring a different reserve size) of different severities on different sized populations. The PVA showed that populations up to 300 individuals (1 500 ha) have a negative population growth rate, high losses of genetic diversity and a greater than 5% chance of extinction within 100 years. Populations of 400?700 individuals (2 000?3 500 ha) showed a decreasing trend in population size suggesting they are likely to become extinct after 100 years. A population of 800 individuals (4 000 ha) was needed for the population size to stabilize. Sensitivity analysis showed adult mortality of greater than 25% to be important in decreasing the viability of populations. Populations of 400 were resistant to a one in 100 year catastrophe which had a 20% mortality and 20% decrease in reproduction. When the mortality was 70%, with 70% decrease in reproduction, a population of 1 000 still had a 12% chance of extinction. As only approximately 50% of the available habitat appears to be occupied, an area up to 8 000 ha (800 individuals) is suggested to be required to maintain viable populations of Mahogany Gliders. A number of management options are recommended including the retention of habitat, establishing corridors between key populations, and using fire to minimize rainforest expansion.


Mammalia ◽  
2020 ◽  
Vol 84 (5) ◽  
pp. 475-482
Author(s):  
Bárbara Cruz-Salazar ◽  
Lorena Ruiz-Montoya

AbstractWe studied the population viability of two common marsupials, Didelphis marsupialis and Didelphis virginiana, based on field data and published ecological and genetic information. Using the VORTEX v. 10. 2.6 program, a 100-year simulation was performed with 1000 iterations for five populations of D. marsupialis and six of D. virginiana. A low probability of extinction was observed in both species, particularly for D. virginiana (0.000–0.007). Population size is higher considering a metapopulation dynamics approach versus individual populations for the two marsupials: 498.25 individuals for D. marsupialis and 367.41 individuals for D. virginiana. The estimated mean genetic diversity was high for both D. marsupialis (He = 0.77–0.78) and D. virginiana (He = 0.79–0.82). The survival of both species over time could be expected to increase if a metapopulation dynamics is favored over the coming decades, despite a 1.3% loss rate of forest cover. The monitoring of population size and genetic diversity is highly recommended to validate the trends suggested by the model; this is especially true for D. marsupialis, a species associated with conserved areas that are becoming progressively less abundant. This research provides information on the responses of common mammalian species to environmental changes such as deforestation.


Sign in / Sign up

Export Citation Format

Share Document