scholarly journals Habitat Suitability Modeling to Inform Seascape Connectivity Conservation and Management

Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 465
Author(s):  
Courtney E. Stuart ◽  
Lisa M. Wedding ◽  
Simon J. Pittman ◽  
Stephanie J. Green

Coastal habitats have experienced significant degradation and fragmentation in recent decades under the strain of interacting ecosystem stressors. To maintain biodiversity and ecosystem functioning, coastal managers and restoration practitioners face the urgent tasks of identifying priority areas for protection and developing innovative, scalable approaches to habitat restoration. Facilitating these efforts are models of seascape connectivity, which represent ecological linkages across heterogeneous marine environments by predicting species-specific dispersal between suitable habitat patches. However, defining the suitable habitat patches and migratory pathways required to construct ecologically realistic connectivity models remains challenging. Focusing on two reef-associated fish species of the Florida Keys, United States of America (USA), we compared two methods for constructing species- and life stage-specific spatial models of habitat suitability—penalized logistic regression and maximum entropy (MaxEnt). The goal of the model comparison was to identify the modeling algorithm that produced the most realistic and detailed products for use in subsequent connectivity assessments. Regardless of species, MaxEnt’s ability to distinguish between suitable and unsuitable locations exceeded that of the penalized regressions. Furthermore, MaxEnt’s habitat suitability predictions more closely aligned with the known ecology of the study species, revealing the environmental conditions and spatial patterns that best support each species across the seascape, with implications for predicting connectivity pathways and the distribution of key ecological processes. Our research demonstrates MaxEnt’s promise as a scalable, species-specific, and spatially explicit tool for informing models of seascape connectivity and guiding coastal conservation efforts.

2021 ◽  
Vol 42 (3(SI)) ◽  
pp. 806-811
Author(s):  
N.F. Khodri ◽  
◽  
T. Lihan ◽  
M.A. Mustapha ◽  
T.M. Taher ◽  
...  

Aim: This research assessed the distribution of leopard to predict the habitat suitability in Taman Negara National Park and adjacent forest area. Methodology: Environmental factors for habitat suitability were derived from geographical information system (GIS) data such as elevation, slope, land-use, distance from urban and distance from river. Leopard presence data from 1993 to 2008 were integrated with the environmental parameters using maximum entropy (MaxEnt) modeling to assess habitat suitability across the study area. Results: The results showed that distance from river contributed the most (39.3%) in the habitat suitability modeling followed by distance from urban (31.4%), elevation (12.3%), land use types (10.1%), and slope (6.9%). Distance from river and urban showed highest contribution that influenced leopard distribution in which most suitable habitat occurred in proximity with river and further from urban. Habitat suitability of leopard were distributed among 48% over 2,218,389 ha of the study area. Interpretation: The findings of this study provides knowledge on how the species move and exploit different habitat niches for more effective conservation management. It provide models for future wildlife conservation and urban planning.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 726 ◽  
Author(s):  
Mikołaj Adamczyk ◽  
Piotr Parasiewicz ◽  
Paolo Vezza ◽  
Paweł Prus ◽  
Giovanni De Cesare

Application of instream habitat models such as the Mesohabitat Simulation Model (MesoHABSIM) is becoming increasingly popular. Such models can predict alteration to a river physical habitat caused by hydropower operation or river training. They are a tool for water management planning, especially in terms of requirements of the Water Framework Directive. Therefore, model verification studies, which investigate the accuracy and reliability of the results generated, are essential. An electrofishing survey was conducted in September 2014 on the Stura di Demonte River located in north-western Italy. One hundred and sixteen bullhead—Cottus gobio L.—were captured in 80 pre-exposed area electrofishing (PAE) grids. Observations of bullhead distribution in various habitats were used to validate MesoHABSIM model predictions created with inductive and deductive habitat suitability indices. The inductive statistical models used electrofishing data obtained from multiple mountainous streams, analyzed with logistic regression. The deductive approach was based on conditional habitat suitability criteria (CHSC) derived from expert knowledge and information gathered from the literature about species behaviour and habitat use. The results of model comparison and validation show that although the inductive models are more precise and reflect site- and species-specific characteristics, the CHSC model provides quite similar results. We propose to use inductive models for detailed planning of measures that could potentially impair riverine ecosystems at a local scale, since the CHSC model provides general information about habitat suitability and use of such models is advised in pre-development or generic scale studies. However, the CHSC model can be further calibrated with localized electrofishing data at a lower cost than development of an inductive model.


2017 ◽  
Vol 74 (7) ◽  
pp. 1000-1008 ◽  
Author(s):  
Joseph R. Krieger ◽  
James S. Diana

We evaluated the quantity, quality, and spatial distribution of riverine nursery habitat for larval, young-of-year (YOY), and juvenile (<500 mm) lake sturgeon (Acipenser fulvescens) in the North Channel of the St. Clair River (SCR), Michigan, using habitat suitability modeling (HSM) and fish collections. This HSM was developed using georeferenced habitat information on substrates, invertebrate densities, benthic flow velocities, and water depth. High-quality habitat comprised 29.1% of the study area, primarily in river bends and other areas where water velocities were highly varied. In all, 283 larval lake sturgeon were collected, with the majority found in high-quality habitat (81%) and heavily clustered in three locations (91.2% of total catch). Substrate composition and benthic flow velocity were the best indicators of observed larval catch-per-unit-effort (CPUE) patterns. Available data on captured YOY and juveniles were used to corroborate modeled habitat output and revealed strong associations between modeled habitat conditions and young lake sturgeon presence. An abundance of suitable habitat for young lake sturgeon within the North Channel of the SCR suggests that lack of suitable spawning habitat or high mortality early in life limits recruitment success in this system.


2021 ◽  
pp. 382-397
Author(s):  
Brian L. Cypher ◽  
Scott E. Phillips ◽  
Tory L. Westall ◽  
Erin N. Tennant ◽  
Lawrence R. Saslaw ◽  
...  

The Tipton kangaroo rat (Dipodomys nitratoides nitratoides; TKR) is listed as endangered both Federally and by the state of California due to profound habitat loss throughout its range in the southern San Joaquin Valley of California. Habitat loss is still occurring and critical needs for TKR include identifying occupied sites, quantifying optimal habitat conditions, and conserving habitat. Our objectives were to (1) conduct surveys to identify sites where TKR were extant, (2) assess habitat attributes on all survey sites, (3) generate a GIS-based model of TKR habitat suitability, (4) use the model to determine the quantity and quality of remaining TKR habitat, and (5) use these results to develop conservation recommendations. We surveyed for TKR on 44 sites by live-trapping and detected TKR on 15 sites. Sites with TKR tended to have larger alkali scalds and no obvious sign of past tilling compared to sites without TKR. Also, sites with TKR usually had relatively sparse ground cover and seepweed (Suaeda nigra) was present. The non-protected Heermann’s kangaroo rat (Dipodomys heermanni), a larger competitor, was either absent or present in relatively low numbers at sites with TKR, and when present its abundance was inversely related to that of TKR. Based on our habitat suitability modeling, an estimated 30,000 ha of moderately high or high quality TKR habitat and 60,000 ha of lower or medium quality habitat remain. However, habitat is still being lost and conversion of at least one survey site with TKR occurred during this project. Recommendations for TKR conservation are to (1) conduct additional TKR surveys on unsurveyed but suitable sites, (2) conserve suitable habitat on unprotected lands, (3) manage vegetation on occupied sites if necessary, (4) restore disturbed lands to increase suitability for TKR, and (5) research methods and conduct translocations of TKR to unoccupied sites with suitable habitat.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huiyi Su ◽  
Manjit Bista ◽  
Mingshi Li

AbstractHabitat evaluation is essential for managing wildlife populations and formulating conservation policies. With the rise of innovative powerful statistical techniques in partnership with Remote Sensing, GIS and GPS techniques, spatially explicit species distribution modeling (SDM) has rapidly grown in conservation biology. These models can help us to study habitat suitability at the scale of the species range, and are particularly useful for examining the overlapping habitat between sympatric species. Species presence points collected through field GPS observations, in conjunction with 13 different topographic, vegetation related, anthropogenic, and bioclimatic variables, as well as a land cover map with seven classification categories created by support vector machine (SVM) were used to implement Maxent and GARP ecological niche models. With the resulting ecological niche models, the suitable habitat for asiatic black bear (Ursus thibetanus) and red panda (Ailurus fulgens) in Nepal Makalu Barun National Park (MBNP) was predicted. All of the predictor variables were extracted from freely available remote sensing and publicly shared government data resources. The modeled results were validated by using an independent dataset. Analysis of the regularized training gain showed that the three most important environmental variables for habitat suitability were distance to settlement, elevation, and mean annual temperature. The habitat suitability modeling accuracy, characterized by the mean area under curve, was moderate for both species when GARP was used (0.791 for black bear and 0.786 for red panda), but was moderate for black bear (0.857), and high for red panda (0.920) when Maxent was used. The suitable habitat estimated by Maxent for black bear and red panda was 716 km2 and 343 km2 respectively, while the suitable area determined by GARP was 1074 km2 and 714 km2 respectively. Maxent predicted that the overlapping area was 83% of the red panda habitat and 40% of the black bear habitat, while GARP estimated 88% of the red panda habitat and 58% of the black bear habitat overlapped. The results of land cover exhibited that barren land covered the highest percentage of area in MBNP (36.0%) followed by forest (32.6%). Of the suitable habitat, both models indicated forest as the most preferred land cover for both species (63.7% for black bear and 61.6% for red panda from Maxent; 59.9% black bear and 58.8% for red panda from GARP). Maxent outperformed GARP in terms of habitat suitability modeling. The black bear showed higher habitat selectivity than red panda. We suggest that proper management should be given to the overlapping habitats in the buffer zone. For remote and inaccessible regions, the proposed methods are promising tools for wildlife management and conservation, deserving further popularization.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 263
Author(s):  
Christopher C. Dickinson ◽  
John G. Jelesko ◽  
Jacob N. Barney

The US native liana, poison ivy (Toxicodendron radicans), responsible for contact dermatitis in humans, is a competitive weed with great potential for expansion in disturbed habitats. To facilitate a better understanding of this threat, we sought to evaluate habitat suitability, population demography, and biotic interactions of poison ivy, using a series of complementary field studies in the two habitats where it most commonly occurs—forest interiors and edges. Of the 2500 seeds planted across both habitats, poison ivy initially colonized forest interiors (32% emergence) at a higher rate than edge habitats (16.5% emergence). However, forest interior seedlings were less likely to survive (interior n = 3; edge n = 15), which might be attributed to herbivore pressure when the seedlings were smaller in the less competitive forest interior. Once established, the poison ivy seedlings appeared to be more tolerant of herbivory, except that of large grazers such as deer. The early life stage of seedling emergence, survival, and establishment are critical in poison ivy success, with biotic pressure, especially from plant competition and deer, limiting recruitment. A suitable habitat of this expanding native liana would increase with increasing forest fragmentation, but might be buffered by the expanding deer population.


2014 ◽  
Vol 5 (2) ◽  
pp. 315-329 ◽  
Author(s):  
Jeff R. Troy ◽  
Nick D. Holmes ◽  
Joseph A. Veech ◽  
André F. Raine ◽  
M. Clay Green

Abstract The Newell's shearwater, or ‘A’o Puffinus newelli, is endemic to the main islands of the Hawaiian Archipelago and is listed as endangered on the International Union for Conservation of Nature Red List and as threatened under the U.S. Endangered Species Act. Using abiotic and biotic environmental variables, we developed a terrestrial habitat suitability model for this species on Kauai to predict habitat that could be suitable in the absence of anthropogenic threats. In addition, we developed a habitat/threat-isolation index incorporating information from our suitability model to identify regions of structurally suitable habitat with less exposure to certain anthropogenic threats (relative to other portions of the island). The habitat suitability model suggests that slope, density of rock fragments within the soil, and native vegetation cover are important factors associated with the current known distribution of the Newell's shearwater on Kauai, and that a moderate portion of the sloped interior terrain of Kauai could potentially be suitable nesting habitat for this species. The habitat/threat-isolation index identified the mountains on the north-central portion of the island as structurally suitable habitat most isolated from a combination of major anthropogenic disturbances (relative to other portions of the island). Much of this region, however, is privately owned and not designated as an official reserve, which could indicate a need for increased conservation action in this region in the future. This information is important for conservation biologists and private landowners because expanding efforts to control nonnative predators, as well as management of additional lands as reserves, may be necessary for the protection and preservation of the Newell's shearwater.


2021 ◽  
Author(s):  
Abbas Naqibzadeh ◽  
Jalil Sarhangzadeh ◽  
Ahad Sotoudeh ◽  
Marjan Mashkour ◽  
Judith Thomalsky

Habitat suitability models are useful tools for a variety of wildlife management objectives. Distributions of wildlife species can be predicted for geographical areas that have not been extensively surveyed. The basis of these models' work is to minimize the relationship between species distribution and biotic and abiotic environments. For some species, there is information about presence and absence that allows the use of a variety of standard statistical methods, however, the absence data is not available for most species. Nowadays, the methods that need presence-only data are expanded. One of these methods is the Maximum Entropy (MaxEnt) modeling. The purpose of this study is to model the habitat of Urial ( Ovis orientalis arkal ) in the Samelghan plain in the North East of Iran with the MaxEnt method. This algorithm uses the Jackknife plot and percent contribution values to determine the significance of the variables. The results showed that variables such as southern aspects, Juniperus-Acer, Artemisia-Perennial plants, slope 0-5%, and asphalt road were the most important factors affecting the species’ habitat selection. The area under curve (AUC) Receiver Operating Characteristic (ROC) showed an excellent model performance. Suitable habitat was classified based on the threshold value (0.0513) and the ROC, which based on the results 28% of the area was a suitable habitat for Urial.


2016 ◽  
Vol 7 (2) ◽  
pp. 359-368 ◽  
Author(s):  
Clint D. Pogue ◽  
Michael J. Monfils ◽  
David L. Cuthrell ◽  
Benjamin W. Heumann ◽  
Anna K. Monfils

Abstract The Poweshiek skipperling Oarisma poweshiek (Lepidoptera: Hesperiidae) is a historically common prairie butterfly with a range extending throughout the mesic prairies and prairie fens of the upper Midwestern United States and southern Manitoba, Canada. Rapid, range-wide declines have reduced the number of verified Poweshiek skipperling locations to seven, four of which occur in Michigan. To assist with monitoring and, ultimately, conservation efforts, we developed a habitat model using the software Maxent with ecological and geographical factors. Using a lowest-presence threshold methodology, our habitat suitability model indicated potentially high suitability in 26 of 138 prairie fens with no documentation of Poweshiek skipperling occurrence. The strongest predictors of suitable habitat in our model were prairie fen area and surrounding natural land cover. Wildlife managers can use results from this analysis to expand monitoring to include sites with suitable habitat where Poweshiek skipperling are not currently documented, in addition to identifying potential introduction sites.


2020 ◽  
Vol 641 ◽  
pp. 159-175
Author(s):  
J Runnebaum ◽  
KR Tanaka ◽  
L Guan ◽  
J Cao ◽  
L O’Brien ◽  
...  

Bycatch remains a global problem in managing sustainable fisheries. A critical aspect of management is understanding the timing and spatial extent of bycatch. Fisheries management often relies on observed bycatch data, which are not always available due to a lack of reporting or observer coverage. Alternatively, analyzing the overlap in suitable habitat for the target and non-target species can provide a spatial management tool to understand where bycatch interactions are likely to occur. Potential bycatch hotspots based on suitable habitat were predicted for cusk Brosme brosme incidentally caught in the Gulf of Maine American lobster Homarus americanus fishery. Data from multiple fisheries-independent surveys were combined in a delta-generalized linear mixed model to generate spatially explicit density estimates for use in an independent habitat suitability index. The habitat suitability indices for American lobster and cusk were then compared to predict potential bycatch hotspot locations. Suitable habitat for American lobster has increased between 1980 and 2013 while suitable habitat for cusk decreased throughout most of the Gulf of Maine, except for Georges Basin and the Great South Channel. The proportion of overlap in suitable habitat varied interannually but decreased slightly in the spring and remained relatively stable in the fall over the time series. As Gulf of Maine temperatures continue to increase, the interactions between American lobster and cusk are predicted to decline as cusk habitat continues to constrict. This framework can contribute to fisheries managers’ understanding of changes in habitat overlap as climate conditions continue to change and alter where bycatch interactions could occur.


Sign in / Sign up

Export Citation Format

Share Document