scholarly journals Influence of Dry Period Length of Swedish Dairy Cows on the Proteome of Colostrum

Dairy ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 313-325
Author(s):  
Ruben de Vries ◽  
Sjef Boeren ◽  
Kjell Holtenius ◽  
Jacques Vervoort ◽  
Helena Lindmark-Månsson ◽  
...  

The aim of this study was to evaluate the influence of applying a 4-week instead of an 8-week dry period to dairy cows on the proteome of colostrum (first sample) and of transition milk (the fifth postpartum milk sample). Individual milk serum samples of colostrum and transition milk were analysed from 12 Swedish Holstein (SH) and 12 Swedish Red (SR) cows. Samples were prepared by filter-aided sample preparation and dimethyl labelling and analysed by liquid chromatography tandem mass spectrometry. Shortening the dry period resulted in upregulation of 18 proteins in colostrum and transition milk of SR, whereas no statistical differences were found for SH colostrum and transition milk. These upregulated proteins may reflect a specific immune response in the SR samples that was reflected in colostrum as well as in transition milk. Upregulated proteins in colostrum seemed to reflect increased mammary epithelial cell proliferation in the periparturient period when a 4-week dry period was applied. The proteome data indicate that a dry period of 4 weeks to SR cows may not be sufficient for complete regeneration of the mammary epithelium.

2017 ◽  
Vol 84 (4) ◽  
pp. 414-417 ◽  
Author(s):  
Mario Baratta ◽  
Silvia Miretti ◽  
Paolo Accornero ◽  
Giovanna Galeati ◽  
Andrea Formigoni ◽  
...  

The work reported in this Research Communication describes the modification in epithelial cell populations during the first and the last month of milking in Holstein Friesian cows that have undergone different management during the dry period, and we report the differential expression of CD49f+ and cytokeratin18+ cell subpopulations. Twenty six cows were randomly divided into 2 balanced groups that were housed at stocking density of either 11 m2 (CTR) or 5 m2 from 21 ± 3 d before the expected calving until calving. Cells collected from milk samples taken in early lactation and late lactation were directly analysed for CD45, CD49f, cytokeratin 14, cytokeratin 18 and cell viability. We observed a differential expression with a significant reduction in CD49f+ (P < 0·01) and cytokeratin 18+ (P < 0·05) cells in early lactation. Differences were still evident in late lactation but were not significant. These observations suggest that mammary epithelial cell immunophenotypes could be associated with different animal management in the dry period and we hypothesise they may have a role as biomarkers for mammary gland function in dairy cows.


Author(s):  
Andrea Minuti ◽  
Massimo Bionaz ◽  
Vincenzo Lopreiato ◽  
Nicole A. Janovick ◽  
Sandra L. Rodriguez-Zas ◽  
...  

Abstract Background The aim of the study was to investigate the effect of energy overfeeding during the dry period on adipose tissue transcriptome profiles during the periparturient period in dairy cows. Methods Fourteen primiparous Holstein cows from a larger cohort receiving a higher-energy diet (1.62 Mcal of net energy for lactation/kg of dry matter; 15% crude protein) for ad libitum intake to supply 150% (OVR) or 100% (CTR) of energy requirements from dry off until parturition were used. After calving, all cows received the same lactation diet. Subcutaneous adipose tissue (SAT) biopsies were collected at − 14, 1, and 14 d from parturition (d) and used for transcriptome profiling using a bovine oligonucleotide microarray. Data mining of differentially expressed genes (DEG) between treatments and due to sampling time was performed using the Dynamic Impact Approach (DIA) and Ingenuity Pathway Analysis (IPA). Results There was a strong effect of over-feeding energy on DEG with 2434 (False discovery rate-corrected P < 0.05) between OVR and CTR at − 14 d, and only 340 and 538 at 1 and 14 d. The most-impacted and activated pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database that were highlighted by DIA analysis at − 14 d in OVR vs. CTR included 9 associated with carbohydrate metabolism, with ‘Pyruvate metabolism’, ‘Glycolysis/gluconeogenesis’, and ‘Pentose phosphate pathway’ among the most-activated. Not surprisingly, OVR led to marked activation of lipid metabolism (e.g. ‘Fatty acid biosynthesis’ and ‘Glycerolipid metabolism’). Unexpected metabolic pathways that were activated at − 14 d in OVR included several related to metabolism of amino acids (e.g. branched chain) and of cofactors and vitamins (thiamin). Among endocrine and immune system pathways, at − 14 d OVR led to marked activation of ‘PPAR signalling’ and ‘Antigen processing and presentation’. Among key pathways affected over time in OVR, a number were related to translation (e.g. mTOR signaling), endocrine/immune signaling (CXCR4 and IGF1), and lipid metabolism (oxidative phosphorylation) with greater activation in OVR vs. CTR specifically at − 14 d. Although statistical differences for several pathways in OVR vs. CTR nearly disappeared at 1 and 14 vs. − 14 d, despite the well-known catabolic state of adipose depots after calving, the bioinformatics analyses suggested important roles for a number of signaling mechanisms at − 14 vs. 14 than 1 vs. -14 d. This was particularly evident in cows fed to meet predicted energy requirements during the dry period (CTR). Conclusions Data underscored a strong activation by overfeeding energy of anabolic processes in the SAT exclusively prepartum. The study confirmed that higher-energy diets prepartum drive a transcriptional cascade of events orchestrated in part by the activation of PPARγ that regulate preadipocyte differentiation and lipid storage in SAT. Novel aspects of SAT biology to energy overfeeding or change in physiologic state also were uncovered, including the role of amino acid metabolism, mTOR signaling, and the immune system.


2003 ◽  
Vol 2003 ◽  
pp. 73-73
Author(s):  
G. Jaurena ◽  
J. M. Moorby ◽  
N.F.G. Beck

The association among feeding, body fat reserves, plasma leptin concentration and intake has been indicated in many reports, however the characteristics of these associations in late pregnant ruminants is not yet completely clear. As part of a larger experiment concerned with nutrition during the dry period (DP), a study was undertaken to identify the relationship between precalving fat and protein supplementation with plasma leptin concentration and the association of leptin with fat reserves and dry matter intake (DMI) during the periparturient period. Further results associated with this experiment were reported elsewhere (Jaurenaet al., 2001a.,b; Jaurenaet al., 2003).


2021 ◽  
Vol 8 (11) ◽  
pp. 281
Author(s):  
Hai Wang ◽  
Guanxin Lv ◽  
Shuai Lian ◽  
Jianfa Wang ◽  
Rui Wu

Neutrophils represent the first line of mammary gland defense against invading pathogens by transmigration across the mammary epithelial cell barrier. The effect of trace elements on the migration of bovine neutrophils is not clear. In this study, we investigated the effect of copper (Cu; 0.5, 1.0 and 1.5 mg/L), zinc (Zn; 1.0, 5.0 and 10 mg/L) and selenium (Se; 0.1, 1.0 and 2.0 mg/L) on the migration of bovine neutrophils by using a Transwell assay. The results showed that Cu, Zn and Se promoted the number of neutrophils in the trans-mammary epithelium. With the increased concentration of Cu at 1.5 mg/L, the number of neutrophils in the trans-mammary epithelium was increased significantly (p < 0.05). Zn (5.0 mg/L) and Se (0.1 mg/L) increased the migrated number of neutrophils (p < 0.01) to an extremely significant degree. These findings provided a theoretical and experimental basis for mammary gland immunity in dairy cows. Thus, we suggest that adding moderate amounts of different trace elements can improve the immune function of dairy cows.


2012 ◽  
Vol 57 (No. 5) ◽  
pp. 207-219 ◽  
Author(s):  
K. Danowski ◽  
D. Sorg ◽  
J. Gross ◽  
H.H.D. Meyer ◽  
H. Kliem

Negative energy balance (NEB), if followed by metabolic imbalance, is a common problem in high-yielding dairy cows frequently associated with inflammation of the mammary gland. After entering the teat canal, mammary epithelium is the first line of defense against a pathogen invasion. To investigate the effect of NEB on the innate host defense of the mammary epithelium, primary bovine mammary epithelial cell (pbMEC) cultures were generated by cell extraction of milk derived from energy restricted and control feeding cows. pbMEC were obtained from 8 high-yielding dairy cows affected by induced NEB in mid-lactation due to a reduction to 51 &plusmn; 2% of total energy requirement (restriction group) and from 7 control cows (control group). They were exposed to heat-inactivated Escherichia coli and Staphylococcus aureus for 24 and 72 h to investigate the influence of NEB on gene expression profiles of cytokines, chemokines, genes associated with apoptosis and antimicrobial peptides plus their receptors (AMPR) of the innate immune response. The immune challenge of pbMEC demonstrated an effect of immune capacity and NEB in 15 differential expressed genes. NEB induced a substantial up-regulation in restriction compared to control cells by trend in E. coli and a down-regulation in S. aureus exposed cells. Our investigations showed that the dietary-induced NEB in vivo influenced the immune response of pbMEC in vitro and altered the expression of immunological relevant genes due to a difference in energy supply. These results demonstrate that pbMEC are a suitable model for mastitis research, in which even effects of feeding regimes can be displayed. &nbsp;


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 842
Author(s):  
Sudipa Maity ◽  
Ivana Rubić ◽  
Josipa Kuleš ◽  
Anita Horvatić ◽  
Dražen Đuričić ◽  
...  

Dairy cows can suffer from a negative energy balance (NEB) during their transition from the dry period to early lactation, which can increase the risk of postpartum diseases such as clinical ketosis, mastitis, and fatty liver. Zeolite clinoptilolite (CPL), due to its ion-exchange property, has often been used to treat NEB in animals. However, limited information is available on the dynamics of global metabolomics and proteomic profiles in serum that could provide a better understanding of the associated altered biological pathways in response to CPL. Thus, in the present study, a total 64 serum samples were collected from 8 control and 8 CPL-treated cows at different time points in the prepartum and postpartum stages. Labelled proteomics and untargeted metabolomics resulted in identification of 64 and 21 differentially expressed proteins and metabolites, respectively, which appear to play key roles in restoring energy balance (EB) after CPL supplementation. Joint pathway and interaction analysis revealed cross-talks among valproic acid, leucic acid, glycerol, fibronectin, and kinninogen-1, which could be responsible for restoring NEB. By using a global proteomics and metabolomics strategy, the present study concluded that CPL supplementation could lower NEB in just a few weeks, and explained the possible underlying pathways employed by CPL.


2017 ◽  
Vol 100 (12) ◽  
pp. 9824-9834 ◽  
Author(s):  
L. Herve ◽  
H. Quesnel ◽  
V. Lollivier ◽  
J. Portanguen ◽  
R.M. Bruckmaier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document