scholarly journals Effectiveness of Strongyloides Recombinant IgG Immunoreactive Antigen in Detecting IgG and IgG4 Subclass Antibodies for Diagnosis of Human Strongyloidiasis Using Rapid Immunochromatographic Tests

Diagnostics ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 615
Author(s):  
Patcharaporn Boonroumkaew ◽  
Lakkhana Sadaow ◽  
Oranuch Sanpool ◽  
Rutchanee Rodpai ◽  
Tongjit Thanchomnang ◽  
...  

Human strongyloidiasis is an important soil-transmitted helminthiasis that affects millions worldwide and can develop into fatal systemic strongyloidiasis in immunosuppressed patients. We have developed two new rapid and simple-to-use immunochromatographic test (ICT) kits for rapid serodiagnosis that support stool examination for clinical diagnosis. Strongyloides stercoralis recombinant IgG immunoreactive antigen (GenBank: AAB97359.1; rSsIR-based ICT kit) was used for detection of IgG and IgG4 antibodies. The diagnostic efficacy of both kits was evaluated using human serum samples from strongyloidiasis patients, healthy individuals, and those with other parasitosis. At a prevalence of infection of 36.4%, the diagnostic sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the rSsIR-based IgG ICT kit were 91.7%, 83.8%, 76.4%, 94.6%, and 86.7%, respectively, and those of the rSsIR-based IgG4 ICT kit were 78.3%, 84.8%, 74.6%, 87.3%, and 82.4% respectively. The concordance between the two kits was 89.7%. The recombinant antigen can be produced to an unlimited extent and the kits can be used as point-of-care diagnostic tools and in large-scale surveys in endemic areas throughout tropical regions without necessitating additional facilities or ancillary supplies.

Author(s):  
Lakkhana Sadaow ◽  
Oranuch Sanpool ◽  
Rutchanee Rodpai ◽  
Patcharaporn Boonroumkaew ◽  
Wanchai Maleewong ◽  
...  

AbstractHuman strongyloidiasis is an important gastrointestinal disease with an estimated 30 to 100 million people infected. Prevalence is generally underestimated since many infections are asymptomatic, and traditional diagnostic tests based on parasitological examination of stool samples are not adequately sensitive. Serological tests are useful and supportive but are still only available in a reference research setting. We made an immunochromatographic test (ICT) kit for rapid serodiagnosis of human strongyloidiasis. The antigen used in the ICT kit was extracted from larvae of Strongyloides stercoralis. Diagnostic efficacy of the kit was evaluated using human serum samples from strongyloidiasis patients, healthy persons, and those with other parasitoses. When using a cutoff level of 0.5 or above, the diagnostic sensitivity, specificity, and positive and negative predictive values at the prevalence of infection of 34.4%, were 93.3%, 83.7%, 76.7%, and 95.6%, respectively. This ICT kit is easy to use at the point-of-care and a result can be obtained in 15 min. Sophisticated instruments and highly trained staff are not required. It can be used in several diagnostic and public-health settings, e.g., prevalence surveys in endemic areas, confirmation and monitoring of cure post-treatment, diagnosis and screening of infected but asymptomatic individuals, and populations “at risk” for hyperinfection syndrome or disseminated strongyloidiasis if they are given immunosuppressive treatment for other conditions.


2012 ◽  
Vol 19 (11) ◽  
pp. 1859-1863 ◽  
Author(s):  
Andrea-Romana Prusa ◽  
Michael Hayde ◽  
Arnold Pollak ◽  
Kurt R. Herkner ◽  
David C. Kasper

ABSTRACTCongenital toxoplasmosis is a worldwide health problem, and different screening strategies exist. Testing of toxoplasma-specific antibodies in infants identifies congenital toxoplasmosis during the first year of life. However, experience with commercial available immunoassays is limited. The aim of this study was to evaluate both the performance and analytical characteristics of the Liaison diagnostic system in infants. In a retrospective study, serumToxoplasma gondiiantibodies were measured in samples from 333 infants, including 212 noninfected infants and 121 infants with congenital toxoplasmosis. A total of 1,157 umbilical cord blood and peripheral serum samples were analyzed. Liaison toxoplasma-specific IgG and IgM antibodies and the IgG avidity index were compared to the infection status of the infant, determined by the Sabin-Feldman dye test and immunosorbent agglutination assay—IgM. All noninfected infants were seronegative by Liaison IgG within the first year of life. The Liaison system showed a sensitivity of 81.8%, a specificity of 100.0%, a positive predictive value of 100.0%, a negative predictive value of 90.6%, and overall agreement of 84.4% by comparison with the dye test. Overall agreement of both IgM test systems was 96.0%. In this study cohort, avidity did not show a potential diagnostic benefit for the detection of congenital infection. In conclusion, the Liaison system is a valuable tool to monitor the serologic course of infants at risk. A final serologic confirmatory test is recommended to improve the rate of detection of congenital toxoplasmosis at 1 year of life. Protocols of routine follow-up testing in infants and accurate diagnostic tools after acute gestational infections are needed to improve medical care.


Author(s):  
Anastasiya Kostyusheva ◽  
Sergey Brezgin ◽  
Yurii Babin ◽  
Irina Vasil'eva ◽  
Dmitry Kostyushev ◽  
...  

Infectious diseases are a global health problem affecting billions of people. Developing rapid and sensitive diagnostic tools is key for successful patient management and curbing disease spread. Currently available diagnostics are very specific and sensitive but time-consuming and require expensive laboratory settings and well-trained personnel; thus, they are not available in resource-limited areas, for the purposes of large-scale screenings and in case of outbreaks and epidemics. Developing new, rapid, and affordable point-of-care diagnostic assays is urgently needed. This review focuses on CRISPR-based technologies and their perspectives to become platforms for point-of-care nucleic acid detection methods and as deployable diagnostic platforms that could help to identify and curb outbreaks and emerging epidemics. We describe the mechanisms and function of different classes and types of CRISPR-Cas systems, including pros and cons for developing molecular diagnostic tests and applications of each type to detect a wide range of infectious agents. Many Cas proteins (Cas9, Cas12, Cas13, Cas14) have been leveraged to create highly accurate and sensitive diagnostic tools combined with technologies of signal amplification and fluorescent, potentiometric, colorimetric, or lateral flow assay detection. In particular, the most advanced platforms -- SHERLOCK/v2, DETECTR, or CRISPR-Chip -- enable detection of attomolar amounts of pathogenic nucleic acids with specificity comparable to that of PCR but with minimal technical settings. Further developing CRISPR-based diagnostic tools promises to dramatically transform molecular diagnostics, making them easily affordable and accessible virtually anywhere in the world. The burden of socially significant diseases, frequent outbreaks, recent epidemics (MERS, SARS and the ongoing coronoviral nCov-2019 infection) urgently need the developing of express-diagnostic tools. Recently devised CRISPR-technologies represent the unprecedented opportunity to reshape epidemiological surveillance and molecular diagnostics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dhanasekaran Sakthivel ◽  
David Delgado-Diaz ◽  
Laura McArthur ◽  
William Hopper ◽  
Jack S. Richards ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a recently emerged and highly contagious virus that causes coronavirus disease 2019 (COVID-19). As of August 24, 2021, there were more than 212 million confirmed COVID-19 cases and nearly 4.4 million deaths reported globally. Early diagnosis and isolation of infected individuals remains one of the most effective public health interventions to control SARS-CoV-2 spread and for effective clinical management of COVID-19 cases. Currently, SARS-CoV-2 infection is diagnosed presumptively based on clinical symptoms and confirmed by detecting the viral RNA in respiratory samples using reverse transcription polymerase chain reaction (RT-PCR). Standard RT-PCR protocols are time consuming, expensive, and technically demanding, which makes them a poor choice for large scale and point-of-care screening in resource-poor settings. Recently developed isothermal nucleic acid amplification tests (iNAAT), antigen and/or serological tests are cost-effective to scale COVID-19 testing at the point-of-care (PoC) and for surveillance activities. This review discusses the development of rapid PoC molecular tools for the detection and surveillance of SARS-CoV-2 infections.


2020 ◽  
Author(s):  
Won Lee ◽  
Steven Straube ◽  
Ryan Sincic ◽  
Jeanne A. Noble ◽  
Juan Carlos Montoy ◽  
...  

ABSTRACTIntroductionThe ongoing SARS-CoV-2 pandemic has spurred the development of numerous point of care (PoC) immunoassays. Assessments of performance of available kits are necessary to determine their clinical utility. Previous studies have mostly performed these assessments in a laboratory setting, which raises concerns of translating findings for PoC use. The aim of this study was to assess the performance of a lateral flow immunoassay for the detection of SARS-CoV-2 antibodies using samples collected at PoC.MethodOne lateral flow immunoassay (Humasis® COVID-19 IgG/IgM) was tested. In total, 50 PCR RT-PCR positive and 52 RT-PCR negative samples were collected at PoC. Fifty serum specimens from Dec 2018 to Feb 2019 were used as controls for specificity. Serum samples collected between Dec 2019 to Feb 2020 were used as additional comparators. Clinical data including symptom onset date was collected from patient history and the medical record.ResultsThe overall sensitivity for the kit was 74% (95% CI: 59.7% -85.4%). The sensitivity for IgM and IgG detection >14 days after date of onset was 88% (95% CI: 68.8% -97.5%) and 84% (95% CI: 63.9% – 95.5%), with a negative predictive value (NPV) of 94% for IgM (95% CI: 83.5% - 98.8%) and 93% for IgG (95% CI: 81.8% - 97.9%). The overall specificity was 94% (95% CI: 83.5% - 98.8%). The Immunoglobulin specific specificity was 94% for IgM (95% CI: 83.5% - 98.8%) and 98% for IgG (95% CI: 89.4% - 100.0%), with a positive predictive value (PPV) of 88% for IgM (95% CI: 68.8% - 97.5%) and 95% for IgG (95% CI: 77.2% - 99.9%) respectively for samples collected from patients >14 days after date of onset. Specimen collected during early phase of COVID-19 pandemic (Dec 2019 to Feb 2020) showed 11.8% antibody positivity, and 11.3% of PCR-negative patients demonstrated antibody positivity.DiscussionHumasis® COVID-19 IgG/IgM LFA demonstrates greater than 90% PPV and NPV for samples collected 14 days after the onset of symptoms using samples collected at PoC. While not practical for the diagnosis of acute infection, the use of the lateral flow assays with high specificity may have utility for determining seroprevalence or seroconversion in longitudinal studies.


Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 161
Author(s):  
Yangyang Cai ◽  
Jun Yan ◽  
Li Zhu ◽  
Hengliang Wang ◽  
Ying Lu

Hepatitis B is a globally prevalent viral infectious disease caused by the hepatitis B virus (HBV). In this study, an immunochromatographic assay (ICA) for the rapid detection of hepatitis B preS2 antigen (preS2Ag) was established. The magnetic nanoparticles (MNPs) indirectly labelled with goat anti-mouse (GAM) secondary antibody were applied as a nanoprobe for free preS2 antibody (preS2Ab) capturing and signal amplification. By employing sample pre-incubation processing as well, preS2Ag-preS2Ab was sufficiently caught by the GAM-MNPs probe in 5 min. A qualitative sensitivity of 625 ng/mL was obtained by naked-eye observation within 15–20 min. A standard curve (0–5000 ng/mL) was established, with a quantitative limit of detection (LOD) of 3.6 ng/mL, based on the stability and penetrability of the magnetic signal characteristics. The proposed method for preS2Ag was rapid (~25 min, cf. ELISA ~4 h) and had a good accuracy, which was verified using an ELISA kit (relative error < 15%). Large equipment and skilled technicians were not required. The sensitivity and specificity of the developed GAM-MNPs-ICA method were 93.3% and 90% in clinical serum samples (n = 25), respectively. A good detection consistency (84%) was observed between the developed ICA method and 2 types of commercial ELISA kits, indicating that the GAM-MNPs-ICA has a potential application in large-scale screening for and point-of-care diagnosis of hepatitis B or other infectious diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liqun He ◽  
Daniel R. Tessier ◽  
Kyle Briggs ◽  
Matthaios Tsangaris ◽  
Martin Charron ◽  
...  

ABSTRACTSingle-molecule counting is the most accurate and precise method for determining the concentration of a biomarker in solution and is leading to the emergence of digital diagnostic platforms enabling precision medicine. In principle, solid-state nanopores—fully electronic sensors with single-molecule sensitivity—are well suited to the task. Here we present a digital immunoassay scheme capable of reliably quantifying the concentration of a target protein in complex biofluids that overcomes specificity, sensitivity, and consistency challenges associated with the use of solid-state nanopores for protein sensing. This is achieved by employing easily-identifiable DNA nanostructures as proxies for the presence (“1”) or absence (“0”) of the target protein captured via a magnetic bead-based sandwich immunoassay. As a proof-of-concept, we demonstrate quantification of the concentration of thyroid-stimulating hormone from human serum samples down to the high femtomolar range. Further optimization to the method will push sensitivity and dynamic range, allowing for development of precision diagnostic tools compatible with point-of-care format.


Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 79
Author(s):  
Brice Autier ◽  
Sarrah Boukthir ◽  
Brigitte Degeilh ◽  
Sorya Belaz ◽  
Anne Dupuis ◽  
...  

Strongyloides stercoralis serology is a sensitive method for strongyloidiasis diagnosis, but it is prone to cross-reactions with other helminthiases. This four-year retrospective study aimed at estimating the performance of the Bordier IVD® Strongyloides ratti ELISA assay in a non-endemic country (France). The study included all patients tested for strongyloidiasis in our center between 2015 and 2019, by both serology and stool examination. Cases were defined using an algorithm considering serological results, microscopic examination of stools, and other biological, clinical or epidemiological data. The study included 805 stools from 341 patients (70% migrants, 20% travelers, 10% without travel to a highly endemic area). Thirty patients (8.8%) had positive serology, 9 had microscopically proven strongyloidiasis, and 11 and 10 were classified as probable and possible strongyloidiasis, respectively. Performances of microscopy and serology were compared, considering proven and probable strongyloidiasis as true infections. The sensitivity, specificity, positive predictive value and negative predictive value of serology were 100%, 97%, 67% and 100%, respectively, and those of microscopic examination of stools were 45% (p < 0.01), 100% (p < 0.01), 100% (p = 0.079) and 96% (p < 0.001), respectively. Eosinophilia did not help in discriminating true-positive from false-positive results. Overall, these results underline the high value of the S. stercoralis serologic assay, compared to stool examination. The systematic use of this technique for screening purposes in travelers or migrants, or before onset of immunosuppressive therapy, could help to improve patient management and epidemiological knowledge.


2020 ◽  
Author(s):  
Danielle Dias Conte ◽  
Joseane Mayara Almeida Carvalho ◽  
Luciano Kleber de Souza Luna ◽  
Klinger Soares Faíco-Filho ◽  
Ana Helena Perosa ◽  
...  

AbstractSince the Coronavirus Disease 2019 (COVID-19) pandemic, Brazil has the third-highest number of confirmed cases and the second-highest number of recovered patients. SARS-CoV-2 detection by real-time RT-PCR is the gold standard in certified infrastructured laboratories. However, for large-scale testing, diagnostics should be fast, cost-effective, widely available, and deployed for the community, such as serological tests based on lateral flow immunoassay (LFIA) for IgM/IgG detection. We evaluated three different commercial point-of-care (POC) LFIAs for anti-SARS-CoV-2 IgM and IgG detection in capillary whole blood of 100 healthcare workers (HCW) previously tested by RT-PCR: 1) COVID-19 IgG/IgM BIO (Bioclin, Brazil), 2) Diagnostic kit for IgM/IgG Antibody to Coronavirus (SARS-CoV-2) (Livzon, China); and 3) SARS-CoV-2 Antibody Test (Wondfo, China). A total of 84 positives and 16 negatives HCW were tested. The data was also analyzed by the number of days post symptoms (DPS) in three groups: <30 (n=26), 30-59 (n=42), and >59 (n=16). Overall detection was 85.71%, 47.62%, and 44.05% for Bioclin, Livzon, and Wondfo, respectively, with a specificity of 100%, and 98.75% for Livzon on storage serum samples. Bioclin was more sensitive (p<0.01), regardless of the DPS. Thus, the Bioclin can be used as a POC test to monitor SARS-CoV-2 seroconversion in HCW.


2021 ◽  
Vol 34 (3) ◽  
Author(s):  
Seyed Hamid Safiabadi Tali ◽  
Jason J. LeBlanc ◽  
Zubi Sadiq ◽  
Oyejide Damilola Oyewunmi ◽  
Carolina Camargo ◽  
...  

SUMMARY The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory disease coronavirus 2 (SARS-CoV-2), has led to millions of confirmed cases and deaths worldwide. Efficient diagnostic tools are in high demand, as rapid and large-scale testing plays a pivotal role in patient management and decelerating disease spread. This paper reviews current technologies used to detect SARS-CoV-2 in clinical laboratories as well as advances made for molecular, antigen-based, and immunological point-of-care testing, including recent developments in sensor and biosensor devices. The importance of the timing and type of specimen collection is discussed, along with factors such as disease prevalence, setting, and methods. Details of the mechanisms of action of the various methodologies are presented, along with their application span and known performance characteristics. Diagnostic imaging techniques and biomarkers are also covered, with an emphasis on their use for assessing COVID-19 or monitoring disease severity or complications. While the SARS-CoV-2 literature is rapidly evolving, this review highlights topics of interest that have occurred during the pandemic and the lessons learned throughout. Exploring a broad armamentarium of techniques for detecting SARS-CoV-2 will ensure continued diagnostic support for clinicians, public health, and infection prevention and control for this pandemic and provide advice for future pandemic preparedness.


Sign in / Sign up

Export Citation Format

Share Document