scholarly journals Tumor Segmentation in Breast Ultrasound Image by Means of Res Path Combined with Dense Connection Neural Network

Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1565
Author(s):  
Kailuo Yu ◽  
Sheng Chen ◽  
Yanghuai Chen

Over the past few years, researchers have demonstrated the possibilities to use the Computer-Aided Diagnosis (CAD) to provide a preliminary diagnosis. Recently, it is also becoming increasingly common for doctors and computer practitioners to collaborate on developing CAD. Since the early diagnosis of breast cancer is the most critical step, a precise segmentation of breast tumor with accurate edge and shape is vital for accurate diagnoses and reduction in the patients’ pain. In view of the deficient accuracy of existing method, we proposed a novel method based on U-Net to improve the tumor segmentation accuracy in breast ultrasound images. First, Res Path was introduced into the U-Net to reduce the difference between the feature maps of the encoder and decoder. Then, a new connection, dense block from the input of the feature maps in the encoding-to-decoding section, was added to reduce the feature information loss and alleviate the vanishing gradient problem. A breast ultrasound database, which contains 538 tumor images, from Xinhua Hospital in Shanghai and marked by two professional doctors was used to train and test models. We, using ten-fold cross-validation method, compared the U-Net, U-Net with Res Path, and the proposed method to verify the improvements. The results demonstrated an overall improvement by the proposed approach when compared with the other in terms of true-positive rate, false-positive rate, Hausdorff distance indices, Jaccard similarity, and Dice coefficients.

2020 ◽  
Vol 640 ◽  
pp. A88
Author(s):  
Dani C.-Y. Chao ◽  
James H.-H. Chan ◽  
Sherry H. Suyu ◽  
Naoki Yasuda ◽  
Anupreeta More ◽  
...  

Gravitationally lensed quasars are useful for studying astrophysics and cosmology, and enlarging the sample size of lensed quasars is important for multiple studies. In this work, we develop a lens search algorithm for four-image (quad) lensed quasars based on their time variability. In the development of the lens search algorithm, we constructed a pipeline simulating multi-epoch images of lensed quasars in cadenced surveys, accounting for quasar variabilities, quasar hosts, lens galaxies, and the point spread function variation. Applying the simulation pipeline to the Hyper Suprime-Cam (HSC) transient survey, an ongoing cadenced survey, we generated HSC-like difference images of the mock lensed quasars from the lens catalog of Oguri & Marshall (2010, MNRAS, 405, 2579). With the difference images of the mock lensed quasars and the variable objects from the HSC transient survey, we developed a lens search algorithm that picks out variable objects as lensed quasar candidates based on their spatial extent in the difference images. We tested the performance of our lens search algorithm on a sample combining the mock lensed quasars and variable objects from the HSC transient survey. Using difference images from multiple epochs, our lens search algorithm achieves a high true-positive rate (TPR) of 90.1% and a low false-positive rate (FPR) of 2.3% for the bright quads (the third brightest image brightness m3rd <  22.0 mag) with wide separation (the largest separation among the multiple image pairs θLP >  1.5″). With a preselection of the number of blobs in the difference image, we obtain a TPR of 97.6% and a FPR of 2.6% for the bright quads with wide separation. Even when difference images are only available in one single epoch, our lens search algorithm can still detect the bright quads with wide separation at high TPR of 97.6% and low FPR of 2.4% in the optimal seeing scenario, and at TPR of ∼94% and FPR of ∼5% in typical scenarios. Therefore, our lens search algorithm is promising and is applicable to ongoing and upcoming cadenced surveys, particularly the HSC transient survey and the Rubin Observatory Legacy Survey of Space and Time, for finding new lensed quasar systems.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1894
Author(s):  
Chun Guo ◽  
Zihua Song ◽  
Yuan Ping ◽  
Guowei Shen ◽  
Yuhei Cui ◽  
...  

Remote Access Trojan (RAT) is one of the most terrible security threats that organizations face today. At present, two major RAT detection methods are host-based and network-based detection methods. To complement one another’s strengths, this article proposes a phased RATs detection method by combining double-side features (PRATD). In PRATD, both host-side and network-side features are combined to build detection models, which is conducive to distinguishing the RATs from benign programs because that the RATs not only generate traffic on the network but also leave traces on the host at run time. Besides, PRATD trains two different detection models for the two runtime states of RATs for improving the True Positive Rate (TPR). The experiments on the network and host records collected from five kinds of benign programs and 20 famous RATs show that PRATD can effectively detect RATs, it can achieve a TPR as high as 93.609% with a False Positive Rate (FPR) as low as 0.407% for the known RATs, a TPR 81.928% and FPR 0.185% for the unknown RATs, which suggests it is a competitive candidate for RAT detection.


2021 ◽  
pp. 103985622110286
Author(s):  
Tracey Wade ◽  
Jamie-Lee Pennesi ◽  
Yuan Zhou

Objective: Currently eligibility for expanded Medicare items for eating disorders (excluding anorexia nervosa) require a score ⩾ 3 on the 22-item Eating Disorder Examination-Questionnaire (EDE-Q). We compared these EDE-Q “cases” with continuous scores on a validated 7-item version of the EDE-Q (EDE-Q7) to identify an EDE-Q7 cut-off commensurate to 3 on the EDE-Q. Methods: We utilised EDE-Q scores of female university students ( N = 337) at risk of developing an eating disorder. We used a receiver operating characteristic (ROC) curve to assess the relationship between the true-positive rate (sensitivity) and the false-positive rate (1-specificity) of cases ⩾ 3. Results: The area under the curve showed outstanding discrimination of 0.94 (95% CI: .92–.97). We examined two specific cut-off points on the EDE-Q7, which included 100% and 87% of true cases, respectively. Conclusion: Given the EDE-Q cut-off for Medicare is used in conjunction with other criteria, we suggest using the more permissive EDE-Q7 cut-off (⩾2.5) to replace use of the EDE-Q cut-off (⩾3) in eligibility assessments.


2016 ◽  
Vol 24 (2) ◽  
pp. 263-272 ◽  
Author(s):  
Kosuke Imai ◽  
Kabir Khanna

In both political behavior research and voting rights litigation, turnout and vote choice for different racial groups are often inferred using aggregate election results and racial composition. Over the past several decades, many statistical methods have been proposed to address this ecological inference problem. We propose an alternative method to reduce aggregation bias by predicting individual-level ethnicity from voter registration records. Building on the existing methodological literature, we use Bayes's rule to combine the Census Bureau's Surname List with various information from geocoded voter registration records. We evaluate the performance of the proposed methodology using approximately nine million voter registration records from Florida, where self-reported ethnicity is available. We find that it is possible to reduce the false positive rate among Black and Latino voters to 6% and 3%, respectively, while maintaining the true positive rate above 80%. Moreover, we use our predictions to estimate turnout by race and find that our estimates yields substantially less amounts of bias and root mean squared error than standard ecological inference estimates. We provide open-source software to implement the proposed methodology.


Author(s):  
Yosef S. Razin ◽  
Jack Gale ◽  
Jiaojiao Fan ◽  
Jaznae’ Smith ◽  
Karen M. Feigh

This paper evaluates Banks et al.’s Human-AI Shared Mental Model theory by examining how a self-driving vehicle’s hazard assessment facilitates shared mental models. Participants were asked to affirm the vehicle’s assessment of road objects as either hazards or mistakes in real-time as behavioral and subjective measures were collected. The baseline performance of the AI was purposefully low (<50%) to examine how the human’s shared mental model might lead to inappropriate compliance. Results indicated that while the participant true positive rate was high, overall performance was reduced by the large false positive rate, indicating that participants were indeed being influenced by the Al’s faulty assessments, despite full transparency as to the ground-truth. Both performance and compliance were directly affected by frustration, mental, and even physical demands. Dispositional factors such as faith in other people’s cooperativeness and in technology companies were also significant. Thus, our findings strongly supported the theory that shared mental models play a measurable role in performance and compliance, in a complex interplay with trust.


2014 ◽  
Author(s):  
Andreas Tuerk ◽  
Gregor Wiktorin ◽  
Serhat Güler

Quantification of RNA transcripts with RNA-Seq is inaccurate due to positional fragment bias, which is not represented appropriately by current statistical models of RNA-Seq data. This article introduces the Mix2(rd. "mixquare") model, which uses a mixture of probability distributions to model the transcript specific positional fragment bias. The parameters of the Mix2model can be efficiently trained with the Expectation Maximization (EM) algorithm resulting in simultaneous estimates of the transcript abundances and transcript specific positional biases. Experiments are conducted on synthetic data and the Universal Human Reference (UHR) and Brain (HBR) sample from the Microarray quality control (MAQC) data set. Comparing the correlation between qPCR and FPKM values to state-of-the-art methods Cufflinks and PennSeq we obtain an increase in R2value from 0.44 to 0.6 and from 0.34 to 0.54. In the detection of differential expression between UHR and HBR the true positive rate increases from 0.44 to 0.71 at a false positive rate of 0.1. Finally, the Mix2model is used to investigate biases present in the MAQC data. This reveals 5 dominant biases which deviate from the common assumption of a uniform fragment distribution. The Mix2software is available at http://www.lexogen.com/fileadmin/uploads/bioinfo/mix2model.tgz.


2021 ◽  
Author(s):  
Shloak Rathod

<div><div><div><p>The proliferation of online media allows for the rapid dissemination of unmoderated news, unfortunately including fake news. The extensive spread of fake news poses a potent threat to both individuals and society. This paper focuses on designing author profiles to detect authors who are primarily engaged in publishing fake news articles. We build on the hypothesis that authors who write fake news repeatedly write only fake news articles, at least in short-term periods. Fake news authors have a distinct writing style compared to real news authors, who naturally want to maintain trustworthiness. We explore the potential to detect fake news authors by designing authors’ profiles based on writing style, sentiment, and co-authorship patterns. We evaluate our approach using a publicly available dataset with over 5000 authors and 20000 articles. For our evaluation, we build and compare different classes of supervised machine learning models. We find that the K-NN model performed the best, and it could detect authors who are prone to writing fake news with an 83% true positive rate with only a 5% false positive rate.</p></div></div></div>


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hongcheng Zou ◽  
Ziling Wei ◽  
Jinshu Su ◽  
Baokang Zhao ◽  
Yusheng Xia ◽  
...  

Website fingerprinting (WFP) attack enables identifying the websites a user is browsing even under the protection of privacy-enhancing technologies (PETs). Previous studies demonstrate that most machine-learning attacks need multiple types of features as input, thus inducing tremendous feature engineering work. However, we show the other alternative. That is, we present Probabilistic Fingerprinting (PF), a new website fingerprinting attack that merely leverages one type of features. They are produced by using a mathematical model PWFP that combines a probabilistic topic model with WFP for the first time, due to a finding that a plain text and the sequence file generated from a traffic instance are essentially the same. Experimental results show that the proposed new features are more distinguishing than the existing features. In a closed-world setting, PF attains a better accuracy performance (99.79% at most) than prior attacks on various datasets gathered in the scenarios of Shadowsocks, SSH, and TLS, respectively. Besides, even when the number of training instances drops to as few as 4, PF still reaches an accuracy of above 90%. In the more realistic open-world setting, PF attains a high true positive rate (TPR) and Bayes detection rate (BDR), and a low false positive rate (FPR) in all evaluations, which outperforms the other attacks. These results highlight that it is meaningful and possible to explore new features to improve the accuracy of WFP attacks.


2021 ◽  
pp. 096228022110605
Author(s):  
Luigi Lavazza ◽  
Sandro Morasca

Receiver Operating Characteristic curves have been widely used to represent the performance of diagnostic tests. The corresponding area under the curve, widely used to evaluate their performance quantitatively, has been criticized in several respects. Several proposals have been introduced to improve area under the curve by taking into account only specific regions of the Receiver Operating Characteristic space, that is, the plane to which Receiver Operating Characteristic curves belong. For instance, a region of interest can be delimited by setting specific thresholds for the true positive rate or the false positive rate. Different ways of setting the borders of the region of interest may result in completely different, even opposing, evaluations. In this paper, we present a method to define a region of interest in a rigorous and objective way, and compute a partial area under the curve that can be used to evaluate the performance of diagnostic tests. The method was originally conceived in the Software Engineering domain to evaluate the performance of methods that estimate the defectiveness of software modules. We compare this method with previous proposals. Our method allows the definition of regions of interest by setting acceptability thresholds on any kind of performance metric, and not just false positive rate and true positive rate: for instance, the region of interest can be determined by imposing that [Formula: see text] (also known as the Matthews Correlation Coefficient) is above a given threshold. We also show how to delimit the region of interest corresponding to acceptable costs, whenever the individual cost of false positives and false negatives is known. Finally, we demonstrate the effectiveness of the method by applying it to the Wisconsin Breast Cancer Data. We provide Python and R packages supporting the presented method.


Sign in / Sign up

Export Citation Format

Share Document