scholarly journals The Complexity and Entropy Analysis for Service Game Model Based on Different Expectations and Optimal Pricing

Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 858 ◽  
Author(s):  
Yimin Huang ◽  
Xingli Chen ◽  
Qiuxiang Li ◽  
Xiaogang Ma

The internet has provided a new means for manufacturers to reach consumers. On the background of the widespread multichannel sales in China, based on a literature review of the service game and multichannel supply chain, this paper builds a multichannel dynamic service game model where the retailer operates an offline channel and the manufacturer operates an online channel and offers customers the option to buy online and pick up from the retailer’s store (BOPS). The manufacturer and the retailer take maximizing the channel profits as their business objectives and make channel service game under optimal pricing. We carry on theoretical analysis of the model and perform numerical simulations from the perspective of entropy theory, game theory, and chaotic dynamics. The results show that the stability of the system will weaken with the increase in service elasticity coefficient and that it is unaffected by the feedback parameter adjustment of the retailer. The BOPS channel strengthens the cooperation between the manufacturer and the retailer and moderates the conflict between the online and the offline channels. The system will go into chaotic state and cause the system’s entropy to increase when the manufacturer adjusts his/her service decision quickly. In a chaotic state, the system is sensitive to initial conditions and service input is difficult to predict; the manufacturer and retailer need more additional information to make the system clear or use the method of feedback control to delay or eliminate the occurrence of chaos.

Author(s):  
Li ◽  
Chen ◽  
Huang ◽  
Gui ◽  
Liu

This paper constructs a dual-channel value chain composed of one altruistic manufacturer and one altruistic retailer, where the manufacturer makes green innovation input for green products and sells its green products to its customers through both the direct channel and the traditional channel, the retailer provides channel service for customers and sells green products through the traditional channel. We consider two scenarios in which the manufacturer and the retailer make decentralized and centralized decisions, respectively. We develop two dynamic game models for the two scenarios and analyze the dynamic behaviors of the two dynamic game models using bifurcation diagram, LLE (largest Lyapunov exponent) and attraction of basin, etc. We find that the stability region in decentralized decision model is greater than that of centralized decision, and narrow with increase of service value, green innovation input. In the decentralized decision model, the stability of the system decreases with the altruistic behavior increasing. With the price adjustment speed increasing, the dual-channel green value chain system enters into chaotic state through flip bifurcation or N-S bifurcation. In the stable state, the manufacturer and the retailer can obtain the maximum utility with the appropriate value of green innovation input. In the chaotic state, the utilities of the manufacturer and retailer are greatly affected and significantly reduced. This study will provide good guidance for sustainable development decision-making of dual-channel green value chain.


2008 ◽  
Vol 597 ◽  
pp. 261-282 ◽  
Author(s):  
KAREN E. DANIELS ◽  
OLIVER BRAUSCH ◽  
WERNER PESCH ◽  
EBERHARD BODENSCHATZ

Experimental and theoretical investigations of undulation patterns in high-pressure inclined layer gas convection at a Prandtl number near unity are reported. Particular focus is given to the competition between the spatiotemporal chaotic state of undulation chaos and stationary patterns of ordered undulations. In experiments, a competition and bistability between the two states is observed, with ordered undulations most prevalent at higher Rayleigh number. The spectral pattern entropy, spatial correlation lengths and defect statistics are used to characterize the competing states. The experiments are complemented by a theoretical analysis of the Oberbeck–Boussinesq equations. The stability region of the ordered undulations as a function of their wave vectors and the Rayleigh number is obtained with Galerkin techniques. In addition, direct numerical simulations are used to investigate the spatiotemporal dynamics. In the simulations, both ordered undulations and undulation chaos were observed dependent on initial conditions. Experiment and theory are found to agree well.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ning Li ◽  
Zheng Wang

<p style='text-indent:20px;'>In this paper, considering dual-channel retailing (online channel and offline channel), we study the pricing and ordering problem under different shipping policies. In this research, we mainly consider three shipping policies: without shipping price (OSP), with shipping price (WSP) and conditional free shipping (CFP). Based on the principle of maximum utility, we firstly obtain the probability of demand for the online and offline channels and further model the pricing and ordering problem under the three shipping policies. Further, avoiding the curse of dimensionality, the deep deterministic policy gradient (DDPG) method is employed to solve the problem to obtain the optimal pricing and ordering policy. Finally, we conduct some numerical experiments to compare the optimal pricing and ordering quantity under the three different shipping policies and reveal some managerial insights. The results show that the conditional free shipping policy is better than the other two policies, and stimulates the increase of demand to gain more profit.</p>


2020 ◽  
Vol 12 (8) ◽  
pp. 3236
Author(s):  
Gan Wan ◽  
Gang Kou ◽  
Tie Li ◽  
Feng Xiao ◽  
Yang Chen

Due to the popularization of the concept of “new retailing”, we study a new commercial model named O2O (online-to-offline), which is a good combination model of a direct channel and a traditional retail channel. We analyze an O2O supply chain in which manufacturers are responsible for making green products and selling them through both online and offline channels. The retailer is responsible for all online and offline channels’ orders, and the manufacturer gives the retailer a fixed fee. We construct a mathematical function model and analyze the greenness and pricing strategies of centralized and decentralized settings through the retailer Stackelberg game model. Due to the effects of the double marginalization of supply chain members, we adopt a simple contract to coordinate the green supply chain. The paper’s contributions are that we obtain pricing and greening strategies by taking the cooperation of offline channels and online channels into consideration under the O2O green supply chain environment.


1992 ◽  
Vol 02 (01) ◽  
pp. 1-9 ◽  
Author(s):  
YOHANNES KETEMA

This paper is concerned with analyzing Melnikov’s method in terms of the flow generated by a vector field in contrast to the approach based on the Poincare map and giving a physical interpretation of the method. It is shown that the direct implication of a transverse crossing between the stable and unstable manifolds to a saddle point of the Poincare map is the existence of two distinct preserved homoclinic orbits of the continuous time system. The stability of these orbits and their role in the phenomenon of sensitive dependence on initial conditions is discussed and a physical example is given.


1999 ◽  
Author(s):  
O. Burak Ozdoganlar ◽  
William J. Endres

Abstract This paper presents a mathematical perspective, to complement the intuitive or practice-oriented perspective, to classifying machining operations as parallel-process (simultaneous) or single-process in nature. Illustrative scenarios are provided to demonstrate how these two perspectives may lead in different situations to the same or different conclusions regarding process parallelism. A model representation of a general parallel-process machining system is presented, based on which the general parallel-process stability eigenvalue problem is formulated. For a special simplified case of the general system, analytical methods are employed to derive a fully analytical stability solution. Thorough study of this solution through eigenvector analysis sheds light on some fundamental phenomena of parallel-process machining stability, such as dependence of the stability solution on phasing of the initial conditions (disturbances). This establishes the importance, when employing numerical time-domain simulation for such analyses, of specifying initial conditions for the multiple processes to be arbitrarily phased so that correct results are achieved across all spindle speeds.


2011 ◽  
Vol 39 (1) ◽  
pp. 220 ◽  
Author(s):  
Adesola L. NASSIR ◽  
Omolayo J. ARIYO

Twelve rice varieties were cultivated in inland hydromorphic lowland over a four year-season period in tropical rainforest ecology to study the genotype x environment (GxE) interaction and yield stability and to determine the agronomic and environmental factors responsible for the interaction. Data on yield and agronomic characters and environmental variables were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype x Environment Interaction, GGE and the yield stability using the modified rank-sum statistic (YSi). AMMI analysis revealed environmental differences as accounting for 47.6% of the total variation. The genotype and GxE interaction accounted for 28.5% and 24% respectively. The first and second interaction axes captured 57% and 30% of the total variation due to GXE interaction. The analysis identified ‘TOX 3107’ as having a combination of stable and average yield. The GGE captured 85.8%of the total GxE. ‘TOX 3226-53-2-2-2’ and ‘ITA 230’ were high yielding but adjudged unstable by AMMI. These two varieties along with ‘WITA 1’ and ‘TOX 3180-32-2-1-3-5’ were identified with good inland swamp environment, which is essentially moisture based. The two varieties (‘TOX 3226-53-2-2-2’ and ‘ITA 230’), which were equally considered unstable in yield by the stability variance, ?2i, were selected by YSi in addition to ‘TOX 3107’, ‘WITA 1’, ‘IR 8’ and ‘M 55’. The statistic may positively complement AMMI and GGE in selecting varieties suited to specific locations with peculiar fluctuations in environmental indices. Correlation of PC scores with environmental and agronomic variables identified total rainfall up to the reproductive stage, variation in tillering ability and plant height as the most important factors underlying the GxE interaction. Additional information from the models can be positively utilized in varietal development for different ecologies.


2009 ◽  
Vol 23 (10) ◽  
pp. 2303-2322 ◽  
Author(s):  
XIAO-FENG PANG ◽  
MEI-JIE LIU

The dynamic features of soliton transporting the bio-energy in the α-helix protein molecules with three channels under influences of temperature of systems and chain–chain interaction among these channels have been numerically studied by using the dynamic equations in a new model and the fourth-order Runge–Kutta method. This result obtained shows that the chain–chain interaction depresses the stability of the soliton due to the dispersed effect, but the stability of the soliton in the case of simultaneous motivation of three channels by an initial conditions is better than that in another initial condition. We also find from this investigation that the new soliton can transport steadily over 1000 amino acid residues in the cases of motion of long time of 120 ps, and retain their shapes and energies to travel towards the protein molecules after mutual collision of the solitons at the biological temperatures of 300 K. Therefore the soliton is very robust against the thermal perturbation of the α-helix protein molecules at 300 K. From the investigation of changes of features of the soliton with increasing temperature, we find that the amplitudes and velocities of the solitons decrease with increasing temperature of proteins, but the soliton disperses in the cases of higher temperature of 325 K and larger structure disorders. Thus we find that the critical temperature of the soliton occurring in the α-helix protein molecules is about 320 K. Therefore we can conclude that the soliton in the new model can play an important role in the bio-energy transport in the α-helix protein molecules with three channels at biological temperature, and the new model is possibly a candidate for the mechanism of this transport.


2021 ◽  
Vol 31 (15) ◽  
Author(s):  
Penghe Ge ◽  
Hongjun Cao

The existence of chaos in the Rulkov neuron model is proved based on Marotto’s theorem. Firstly, the stability conditions of the model are briefly renewed through analyzing the eigenvalues of the model, which are very important preconditions for the existence of a snap-back repeller. Secondly, the Rulkov neuron model is decomposed to a one-dimensional fast subsystem and a one-dimensional slow subsystem by the fast–slow dynamics technique, in which the fast subsystem has sensitive dependence on the initial conditions and its snap-back repeller and chaos can be verified by numerical methods, such as waveforms, Lyapunov exponents, and bifurcation diagrams. Thirdly, for the two-dimensional Rulkov neuron model, it is proved that there exists a snap-back repeller under two iterations by illustrating the existence of an intersection of three surfaces, which pave a new way to identify the existence of a snap-back repeller.


Author(s):  
Wei Ge ◽  
Ning Yang ◽  
Wei Wang ◽  
Jinghai Li

The drag interaction between gas and solids not only acts as a driving force for solids in gas-solids flows but also plays as a major role in the dissipation of the energy due to drag losses. This leads to enormous complexities as these drag terms are highly non-linear and multiscale in nature because of the variations in solids spatio-temporal distribution. This chapter provides an overview of this important aspect of the hydrodynamic interactions between the gas and solids and the role of spatio-temporal heterogeneities on the quantification of this drag force. In particular, a model is presented which introduces a mesoscale description into two-fluid models for gas-solids flows. This description is formulated in terms of the stability of gas-solids suspension. The stability condition is, in turn, posed as a minimization problem where the competing factors are the energy consumption required to suspend and transport the solids and their gravitational potential energy. However, the lack of scale-separation leads to many uncertainties in quantifying mesoscale structures. The authors have incorporated this model into computational fluid dynamics (CFD) simulations which have shown improvements over traditional drag models. Fully resolved simulations, such as those mentioned in this chapter and the subject of a later chapter on Immersed Boundary Methods, can be used to obtain additional information about these mesoscale structures. This can be used to formulate better constitutive equations for continuum models.


Sign in / Sign up

Export Citation Format

Share Document