scholarly journals Morphological Computation: Nothing but Physical Computation

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 942 ◽  
Author(s):  
Marcin Miłkowski

The purpose of this paper is to argue against the claim that morphological computation is substantially different from other kinds of physical computation. I show that some (but not all) purported cases of morphological computation do not count as specifically computational, and that those that do are solely physical computational systems. These latter cases are not, however, specific enough: all computational systems, not only morphological ones, may (and sometimes should) be studied in various ways, including their energy efficiency, cost, reliability, and durability. Second, I critically analyze the notion of “offloading” computation to the morphology of an agent or robot, by showing that, literally, computation is sometimes not offloaded but simply avoided. Third, I point out that while the morphology of any agent is indicative of the environment that it is adapted to, or informative about that environment, it does not follow that every agent has access to its morphology as the model of its environment.

2020 ◽  
Vol 8 (1) ◽  
pp. 116-122
Author(s):  
Md Mehedi Hasan ◽  
Meskat Jamil ◽  
Md Mahbub-ul-Alam

The building shape is one of the most important considerations in the conceptual stage of building design. Since the building shape determines the size and the orientation of the exterior envelope exposed to the outdoor environment, it can affect building performance in many aspects: energy efficiency, cost and aesthetics. The shape and exterior structure of a house play major roles in determining its energy efficiency and the comfort of residents. The shape is comprised of the building’s height, width, and depth-also known as the footprint. The determination of the structural shape of a high-rise building would preferably involve only the selection and arrangement of the major structural element to resist most efficiently the various combinations of gravity and horizontal loading. Based on the above considerations, this study focuses on the responses by analysing the effects of the lateral loads on two 20 storied high rise structures having edge supported floor systems each of which one with square floor shape and another with circular floor and finally, presents a comparative result.


Proceedings ◽  
2020 ◽  
Vol 47 (1) ◽  
pp. 30
Author(s):  
Gordana Dodig-Crnkovic

According to the currently dominant view, cognitive science is a study of mind and intelligence focused on computational models of knowledge in humans. It is described in terms of symbol manipulation over formal language. This approach is connected with a variety of unsolvable problems, as pointed out by Thagard. In this paper, I argue that the main reason for the inadequacy of the traditional view of cognition is that it detaches the body of a human as the cognizing agent from the higher-level abstract knowledge generation. It neglects the dynamical aspects of cognitive processes, emotions, consciousness, and social aspects of cognition. It is also uninterested in other cognizing agents such as other living beings or intelligent machines. Contrary to the traditional computationalism in cognitive science, the morphological computation approach offers a framework that connects low-level with high-level approaches to cognition, capable of meeting challenges listed by Thagard. To establish this connection, morphological computation generalizes the idea of computation from symbol manipulation to natural/physical computation and the idea of cognition from the exclusively human capacity to the capacity of all goal-directed adaptive self-reflective systems, living organisms as well as robots. Cognition is modeled as a layered process, where at the lowest level, systems acquire data from the environment, which in combination with the already stored data in the morphology of an agent, presents the basis for further structuring and self-organization of data into information and knowledge.


Proceedings ◽  
2020 ◽  
Vol 47 (1) ◽  
pp. 30
Author(s):  
Gordana Dodig-Crnkovic

According to the currently dominant view, cognitive science is a study of mind and intelligence focused on computational models of knowledge in humans. It is described in terms of symbol manipulation over formal language. This approach is connected with a variety of unsolvable problems, as pointed out by Thagard. In this paper, I argue that the main reason for the inadequacy of the traditional view of cognition is that it detaches the body of a human as the cognizing agent from the higher-level abstract knowledge generation. It neglects the dynamical aspects of cognitive processes, emotions, consciousness, and social aspects of cognition. It is also uninterested in other cognizing agents such as other living beings or intelligent machines. Contrary to the traditional computationalism in cognitive science, the morphological computation approach offers a framework that connects low-level with high-level approaches to cognition, capable of meeting challenges listed by Thagard. To establish this connection, morphological computation generalizes the idea of computation from symbol manipulation to natural/physical computation and the idea of cognition from the exclusively human capacity to the capacity of all goal-directed adaptive self-reflective systems, living organisms as well as robots. Cognition is modeled as a layered process, where at the lowest level, systems acquire data from the environment, which in combination with the already stored data in the morphology of an agent, presents the basis for further structuring and self-organization of data into information and knowledge.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Norhayati Mahyuddin ◽  
Mozhgan Samzadeh ◽  
Suzaini M. Zaid ◽  
Norafida Ab Ghafar

PurposeThis paper aims to raise awareness on how a simple action by the occupant can significantly influence building energy efficiency, cost and CO2 emissions to the environment. Classrooms in schools are the primary energy consumers (45.4%) due to the use of artificial lighting, despite Malaysia's tropical climate being ideal for daylight exploitation. This paper focuses on assessing the workplane daylight distribution quality and quantity in baseline and existing conditions of a typical pre-school classroom in Kuala Lumpur as a model-based exploration strategy towards nearly Zero Energy Buildings.Design/methodology/approachThe adopted method is based on the calculation of average daylight factor (DF), daylight illuminance level (IL) and uniformity ratio (UR) parameters affected by the internal fixed drapes through computational and in situ measurements according to the requirements of the law and respective standards comprising the MS1525:2019, GBI and BREEAM.FindingsThe results show how user behaviour can turn a well-daylit area (Net Lettable Area>90%) into a poor-daylit area (NLA<5%) by sacrificing natural daylight. All the parameters' values were significantly decreased from 10% (UR) up to 88% (ADF). Full dependency on artificial lighting has imposed a total of RM18858.90 and CO2 emissions of 25,362 kg for all pre-schools' classrooms in the country per day.Social implicationsThe paper develops the occupants' awareness on their contribution to climate change and global warming through the information and transparency provided.Originality/valueThe evidence indicates that a simple action by the occupant can significantly influence visual comfort, EE, cost and CO2 emissions to the environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Hernández-Carrión ◽  
M. Moyano-Molano ◽  
L. Ricaurte ◽  
A. Clavijo-Romero ◽  
M. X. Quintanilla-Carvajal

AbstractRefractance window (RW) drying is considered an emerging technique in the food field due to its scalability, energy efficiency, cost and end-product quality. It can be used for obtaining flakes from high-oleic palm oil (HOPO) nanoemulsions containing a high concentration of temperature-sensitive active compounds. This work was thus aimed at studying the effect of temperature, thickness of the film drying, nanoemulsion process conditions, and emulsion formulation on the flakes’ physical properties and microstructure. The results showed that HOPO flakes had good physical characteristics: 1.4% to 5.6% moisture content and 0.26 to 0.58 aw. Regarding microstructure, lower fractal dimension (FDt) was obtained when RW drying temperature increased, which is related to more regular surfaces. The results indicated that flakes with optimal physical properties can be obtained by RW drying of HOPO nanoemulsions.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7609
Author(s):  
Poramate Manoonpong ◽  
Luca Patanè ◽  
Xiaofeng Xiong ◽  
Ilya Brodoline ◽  
Julien Dupeyroux ◽  
...  

This review article aims to address common research questions in hexapod robotics. How can we build intelligent autonomous hexapod robots that can exploit their biomechanics, morphology, and computational systems, to achieve autonomy, adaptability, and energy efficiency comparable to small living creatures, such as insects? Are insects good models for building such intelligent hexapod robots because they are the only animals with six legs? This review article is divided into three main sections to address these questions, as well as to assist roboticists in identifying relevant and future directions in the field of hexapod robotics over the next decade. After an introduction in section (1), the sections will respectively cover the following three key areas: (2) biomechanics focused on the design of smart legs; (3) locomotion control; and (4) high-level cognition control. These interconnected and interdependent areas are all crucial to improving the level of performance of hexapod robotics in terms of energy efficiency, terrain adaptability, autonomy, and operational range. We will also discuss how the next generation of bioroboticists will be able to transfer knowledge from biology to robotics and vice versa.


Author(s):  
Viv Kendon ◽  
Angelika Sebald ◽  
Susan Stepney

We introduce and define ‘heterotic computing’ as a combination of two or more computational systems such that they provide an advantage over either substrate used separately. This first requires a definition of physical computation. We take the framework in Horsman et al. (Horsman et al. 2014 Proc. R. Soc. A 470, 20140182. ( doi:10.1098/rspa.2014.0182 )), now known as abstract-representation theory, then outline how to compose such computational systems. We use examples to illustrate the ubiquity of heterotic computing, and to discuss the issues raised when one or more of the substrates is not a conventional silicon-based computer. We briefly outline the requirements for a proper theoretical treatment of heterotic computational systems, and the advantages such a theory would provide.


Sign in / Sign up

Export Citation Format

Share Document