scholarly journals Multi-Type Node Detection in Network Communities

Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1237
Author(s):  
Chinenye Ezeh ◽  
Ren Tao ◽  
Li Zhe ◽  
Wang Yiqun ◽  
Qu Ying

Patterns of connectivity among nodes on networks can be revealed by community detection algorithms. The great significance of communities in the study of clustering patterns of nodes in different systems has led to the development of various methods for identifying different node types on diverse complex systems. However, most of the existing methods identify only either disjoint nodes or overlapping nodes. Many of these methods rarely identify disjunct nodes, even though they could play significant roles on networks. In this paper, a new method, which distinctly identifies disjoint nodes (node clusters), disjunct nodes (single node partitions) and overlapping nodes (nodes binding overlapping communities), is proposed. The approach, which differs from existing methods, involves iterative computation of bridging centrality to determine nodes with the highest bridging centrality value. Additionally, node similarity is computed between the bridge-node and its neighbours, and the neighbours with the least node similarity values are disconnected. This process is sustained until a stoppage criterion condition is met. Bridging centrality metric and Jaccard similarity coefficient are employed to identify bridge-nodes (nodes at cut points) and the level of similarity between the bridge-nodes and their direct neighbours respectively. Properties that characterise disjunct nodes are equally highlighted. Extensive experiments are conducted with artificial networks and real-world datasets and the results obtained demonstrate efficiency of the proposed method in distinctly detecting and classifying multi-type nodes in network communities. This method can be applied to vast areas such as examination of cell interactions and drug designs, disease control in epidemics, dislodging organised crime gangs and drug courier networks, etc.

2020 ◽  
Vol 13 (2) ◽  
pp. 128-136 ◽  
Author(s):  
Seema Rani ◽  
Monica Mehrotra

Background: In today’s world, complex systems are conceptually observed in the form of network structure. Communities inherently existing in the networks have a recognizable elucidation in understanding the organization of networks. Community discovery in networks has grabbed the attention of researchers from multi-discipline. Community detection problem has been modeled as an optimization problem. In broad-spectrum, existing community detection algorithms have adopted modularity as the optimizing function. However, the modularity is not able to identify communities of smaller size as compared to the size of the network. Methods: This paper addresses the problem of the resolution limit posed by modularity. Modular density measure succeeds in countering the resolution limit problem. Finding network communities with maximum modular density is an NP-hard problem In this work, the discrete bat algorithm with modular density as the optimization function is recommended. Results: Experiments are conducted on three real-world datasets. For determining the consistency, ten independent runs of the proposed algorithm has been carried out. The experimental results show that our proposed algorithm produces high-quality community structure along with small size communities. Conclusion: The results are compared with traditional and evolutionary community detection algorithms. The final outcome shows the superiority of discrete bat algorithm with modular density as the optimization function with respect to number of communities, maximum modularity, and average modularity.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 680
Author(s):  
Hanyang Lin ◽  
Yongzhao Zhan ◽  
Zizheng Zhao ◽  
Yuzhong Chen ◽  
Chen Dong

There is a wealth of information in real-world social networks. In addition to the topology information, the vertices or edges of a social network often have attributes, with many of the overlapping vertices belonging to several communities simultaneously. It is challenging to fully utilize the additional attribute information to detect overlapping communities. In this paper, we first propose an overlapping community detection algorithm based on an augmented attribute graph. An improved weight adjustment strategy for attributes is embedded in the algorithm to help detect overlapping communities more accurately. Second, we enhance the algorithm to automatically determine the number of communities by a node-density-based fuzzy k-medoids process. Extensive experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively detect overlapping communities with fewer parameters compared to the baseline methods.


2021 ◽  
pp. 1-17
Author(s):  
Mohammed Al-Andoli ◽  
Wooi Ping Cheah ◽  
Shing Chiang Tan

Detecting communities is an important multidisciplinary research discipline and is considered vital to understand the structure of complex networks. Deep autoencoders have been successfully proposed to solve the problem of community detection. However, existing models in the literature are trained based on gradient descent optimization with the backpropagation algorithm, which is known to converge to local minima and prove inefficient, especially in big data scenarios. To tackle these drawbacks, this work proposed a novel deep autoencoder with Particle Swarm Optimization (PSO) and continuation algorithms to reveal community structures in complex networks. The PSO and continuation algorithms were utilized to avoid the local minimum and premature convergence, and to reduce overall training execution time. Two objective functions were also employed in the proposed model: minimizing the cost function of the autoencoder, and maximizing the modularity function, which refers to the quality of the detected communities. This work also proposed other methods to work in the absence of continuation, and to enable premature convergence. Extensive empirical experiments on 11 publically-available real-world datasets demonstrated that the proposed method is effective and promising for deriving communities in complex networks, as well as outperforming state-of-the-art deep learning community detection algorithms.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 201
Author(s):  
Qinfeng Xiao ◽  
Jing Wang ◽  
Youfang Lin ◽  
Wenbo Gongsa ◽  
Ganghui Hu ◽  
...  

We address the problem of unsupervised anomaly detection for multivariate data. Traditional machine learning based anomaly detection algorithms rely on specific assumptions of normal patterns and fail to model complex feature interactions and relations. Recently, existing deep learning based methods are promising for extracting representations from complex features. These methods train an auxiliary task, e.g., reconstruction and prediction, on normal samples. They further assume that anomalies fail to perform well on the auxiliary task since they are never trained during the model optimization. However, the assumption does not always hold in practice. Deep models may also perform the auxiliary task well on anomalous samples, leading to the failure detection of anomalies. To effectively detect anomalies for multivariate data, this paper introduces a teacher-student distillation based framework Distillated Teacher-Student Network Ensemble (DTSNE). The paradigm of the teacher-student distillation is able to deal with high-dimensional complex features. In addition, an ensemble of student networks provides a better capability to avoid generalizing the auxiliary task performance on anomalous samples. To validate the effectiveness of our model, we conduct extensive experiments on real-world datasets. Experimental results show superior performance of DTSNE over competing methods. Analysis and discussion towards the behavior of our model are also provided in the experiment section.


2021 ◽  
Vol 11 (19) ◽  
pp. 9243
Author(s):  
Jože Rožanec ◽  
Elena Trajkova ◽  
Klemen Kenda ◽  
Blaž Fortuna ◽  
Dunja Mladenić

While increasing empirical evidence suggests that global time series forecasting models can achieve better forecasting performance than local ones, there is a research void regarding when and why the global models fail to provide a good forecast. This paper uses anomaly detection algorithms and explainable artificial intelligence (XAI) to answer when and why a forecast should not be trusted. To address this issue, a dashboard was built to inform the user regarding (i) the relevance of the features for that particular forecast, (ii) which training samples most likely influenced the forecast outcome, (iii) why the forecast is considered an outlier, and (iv) provide a range of counterfactual examples to understand how value changes in the feature vector can lead to a different outcome. Moreover, a modular architecture and a methodology were developed to iteratively remove noisy data instances from the train set, to enhance the overall global time series forecasting model performance. Finally, to test the effectiveness of the proposed approach, it was validated on two publicly available real-world datasets.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Milos Kudelka ◽  
Eliska Ochodkova ◽  
Sarka Zehnalova ◽  
Jakub Plesnik

Abstract The existence of groups of nodes with common characteristics and the relationships between these groups are important factors influencing the structures of social, technological, biological, and other networks. Uncovering such groups and the relationships between them is, therefore, necessary for understanding these structures. Groups can either be found by detection algorithms based solely on structural analysis or identified on the basis of more in-depth knowledge of the processes taking place in networks. In the first case, these are mainly algorithms detecting non-overlapping communities or communities with small overlaps. The latter case is about identifying ground-truth communities, also on the basis of characteristics other than only network structure. Recent research into ground-truth communities shows that in real-world networks, there are nested communities or communities with large and dense overlaps which we are not yet able to detect satisfactorily only on the basis of structural network properties.In our approach, we present a new perspective on the problem of group detection using only the structural properties of networks. Its main contribution is pointing out the existence of large and dense overlaps of detected groups. We use the non-symmetric structural similarity between pairs of nodes, which we refer to as dependency, to detect groups that we call zones. Unlike other approaches, we are able, thanks to non-symmetry, accurately to describe the prominent nodes in the zones which are responsible for large zone overlaps and the reasons why overlaps occur. The individual zones that are detected provide new information associated in particular with the non-symmetric relationships within the group and the roles that individual nodes play in the zone. From the perspective of global network structure, because of the non-symmetric node-to-node relationships, we explore new properties of real-world networks that describe the differences between various types of networks.


Author(s):  
Swarup Chattopadhyay ◽  
Tanmay Basu ◽  
Asit K. Das ◽  
Kuntal Ghosh ◽  
Late C. A. Murthy

AbstractAutomated community detection is an important problem in the study of complex networks. The idea of community detection is closely related to the concept of data clustering in pattern recognition. Data clustering refers to the task of grouping similar objects and segregating dissimilar objects. The community detection problem can be thought of as finding groups of densely interconnected nodes with few connections to nodes outside the group. A node similarity measure is proposed here that finds the similarity between two nodes by considering both neighbors and non-neighbors of these two nodes. Subsequently, a method is introduced for identifying communities in complex networks using this node similarity measure and the notion of data clustering. The significant characteristic of the proposed method is that it does not need any prior knowledge about the actual communities of a network. Extensive experiments on several real world and artificial networks with known ground-truth communities are reported. The proposed method is compared with various state of the art community detection algorithms by using several criteria, viz. normalized mutual information, f-measure etc. Moreover, it has been successfully applied in improving the effectiveness of a recommender system which is rapidly becoming a crucial tool in e-commerce applications. The empirical results suggest that the proposed technique has the potential to improve the performance of a recommender system and hence it may be useful for other e-commerce applications.


Data ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 149
Author(s):  
Amulyashree Sridhar ◽  
Sharvani GS ◽  
AH Manjunatha Reddy ◽  
Biplab Bhattacharjee ◽  
Kalyan Nagaraj

Exploring gene networks is crucial for identifying significant biological interactions occurring in a disease condition. These interactions can be acknowledged by modeling the tie structure of networks. Such tie orientations are often detected within embedded community structures. However, most of the prevailing community detection modules are intended to capture information from nodes and its attributes, usually ignoring the ties. In this study, a modularity maximization algorithm is proposed based on nonlinear representation of local tangent space alignment (LTSA). Initially, the tangent coordinates are computed locally to identify k-nearest neighbors across the genes. These local neighbors are further optimized by generating a nonlinear network embedding function for detecting gene communities based on eigenvector decomposition. Experimental results suggest that this algorithm detects gene modules with a better modularity index of 0.9256, compared to other traditional community detection algorithms. Furthermore, co-expressed genes across these communities are identified by discovering the characteristic tie structures. These detected ties are known to have substantial biological influence in the progression of schizophrenia, thereby signifying the influence of tie patterns in biological networks. This technique can be extended logically on other diseases networks for detecting substantial gene “hotspots”.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 260 ◽  
Author(s):  
Bingyang Huang ◽  
Chaokun Wang ◽  
Binbin Wang

With the enrichment of the entity information in the real world, many networks with attributed nodes are proposed and studied widely. Community detection in these attributed networks is an essential task that aims to find groups where the intra-nodes are much more densely connected than the inter-nodes. However, many existing community detection methods in attributed networks do not distinguish overlapping communities from non-overlapping communities when designing algorithms. In this paper, we propose a novel and accurate algorithm called Node-similarity-based Multi-Label Propagation Algorithm (NMLPA) for detecting overlapping communities in attributed networks. NMLPA first calculates the similarity between nodes and then propagates multiple labels based on the network structure and the node similarity. Moreover, NMLPA uses a pruning strategy to keep the number of labels per node within a suitable range. Extensive experiments conducted on both synthetic and real-world networks show that our new method significantly outperforms state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document