scholarly journals Entropy Generation Analysis of Hybrid Nanomaterial through Porous Space with Variable Characteristics

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 89
Author(s):  
Muhammad Adil Sadiq ◽  
Farwa Haider ◽  
Tasawar Hayat

Salient features of hybrid nanofluid (MoS2-SiO2/water) for Darcy–Forchheimer–Brinkman porous space with variable characteristics is examined. Heat transfer analysis subject to viscous dissipation, nonlinear thermal radiation, and heat generation/absorption is carried out. Disturbance inflow is created by an exponentially stretching curved sheet. Relevant equations are simplified by employing boundary layer theory. Adequate transformations lead to a set of dimensionless equations. Velocity, temperature, and entropy generation rate are analyzed graphically. Comparative results are obtained for hybrid (MoS2-SiO2/water) and nanofluid (MoS2-water and SiO2-water). Physical quantities are analyzed through numerical data.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


2019 ◽  
Vol 29 (9) ◽  
pp. 3394-3416 ◽  
Author(s):  
Muhammad Ijaz Khan ◽  
Ahmed Alsaedi ◽  
Salman Ahmad ◽  
Tasawar Hayat

Purpose This paper aims to examine squeezing flow of hybrid nanofluid inside the two parallel rotating sheets. The upper sheet squeezes downward, whereas the lower sheet stretches. Darcy’s relation describes porous space. Hybrid nanofluid consists of copper (Cu) and titanium oxide (TiO2) nanoparticles and water (H2O). Viscous dissipation and thermal radiation in modeling are entertained. Entropy generation analysis is examined. Design/methodology/approach Transformation procedure is implemented for conversion of partial differential systems into an ordinary one. The shooting scheme computes numerical solution. Findings Velocity, temperature, Bejan number, entropy generation rate, skin friction and Nusselt number are discussed. Key results are mentioned. Velocity field increases vs higher estimations of squeezing parameter, while it declines via larger porosity variable. Temperature of liquid particles enhances vs larger Eckert number. It is also examined that temperature field dominates for TiO2-H2O, Cu-H2O and Cu-TiO2-H2O. Magnitude of heat transfer rate and skin friction coefficient increase against higher squeezing parameter, radiative parameter, porosity variable and suction parameter. Originality/value The originality of this paper is investigation of three-dimensional time-dependent squeezing flow of hybrid nanomaterial between two parallel sheets. To the best of the authors’ knowledge, no such consideration has been carried out in the literature.


Author(s):  
Anupam Bhandari

Present model analyze the flow and heat transfer of water-based carbon nanotubes (CNTs) [Formula: see text] ferrofluid flow between two radially stretchable rotating disks in the presence of a uniform magnetic field. A study for entropy generation analysis is carried out to measure the irreversibility of the system. Using similarity transformation, the governing equations in the model are transformed into a set of nonlinear coupled differential equations in non-dimensional form. The nonlinear coupled differential equations are solved numerically through the finite element method. Variable viscosity, variable thermal conductivity, thermal radiation, and volume concentration have a crucial role in heat transfer enhancement. The results for the entropy generation rate, velocity distributions, and temperature distribution are graphically presented in the presence of physical and geometrical parameters of the flow. Increasing the values of ferromagnetic interaction number, Reynolds number, and temperature-dependent viscosity enhances the skin friction coefficients on the surface and wall of the lower disk. The local heat transfer rate near the lower disk is reduced in the presence of Harman number, Reynolds number, and Prandtl number. The ferrohydrodynamic flow between two rotating disks might be useful to optimize the use of hybrid nanofluid for liquid seals in rotating machinery.


2021 ◽  
pp. 2150342
Author(s):  
P.-Y. Xiong ◽  
M. Ijaz Khan ◽  
R. J. Punith Gowda ◽  
R. Naveen Kumar ◽  
B. C. Prasannakumara ◽  
...  

This investigation is about hybrid nanofluid flowing over a sheet. We considered two-dimensional Darcy–Forchheimer flow of different hybrid nanofluids with the influence of uniform heat source sink and nonlinear thermal radiation. Different nanoparticles can be used to improve the thermal conductivity of a liquid. A study comparing the various hybrid nanofluids to nanofluid is considered. Here, we have selected manganese Zinc ferrite and Nickel Zinc ferrite as nanoparticles with kerosene oil and engine oil as carrier liquids. Suitable similarity transformations are used to construct the required ordinary differential equations. The influence of several non-dimensional parameters on velocity and thermal gradients is analyzed through graphs. Also, entropy generation is computed and analyzed through graph for different involved parameters. Here, we observed that [Formula: see text]–[Formula: see text]–[Formula: see text]–[Formula: see text] had lower velocity when compared to other two solutions. The entropy generation and Bejan number are high in [Formula: see text]–[Formula: see text]–[Formula: see text] when compared to [Formula: see text]–[Formula: see text]–[Formula: see text]–[Formula: see text] and [Formula: see text]–[Formula: see text]–[Formula: see text] and increase in heat generation parameter increases the rate of heat transfer.


2020 ◽  
pp. 1-22
Author(s):  
Rasool Alizadeh ◽  
Javad Mohebbi Najm Abad ◽  
Abolfazl Fattahi ◽  
Mohammad Reza Mohebbi ◽  
Mohammad Hossein Doranehgard ◽  
...  

Abstract This study numerically investigates heat convection and entropy generation in a hybrid nanofluid (Al2O3-Cu-water) flowing around a cylinder embedded in porous media. An artificial-neural-network is used for predictive analysis, in which numerical data are generated to train an intelligence algorithm and to optimize the prediction errors. Results show that the heat transfer of the system increases when the Reynolds number, permeability parameter, or volume fraction of nanoparticles increases. However, the functional forms of these dependencies are complex. In particular, increasing the nanoparticle concentration is found to have a non-monotonic effect on entropy generation. The simulated and predicted data are subjected to particle swarm optimization to produce correlations for the shear stress and Nusselt number. This work demonstrates the capability of artificial intelligence algorithms in predicting the thermohydraulics and thermodynamics of thermal and solutal systems.


2020 ◽  
Vol 34 (20) ◽  
pp. 2050193 ◽  
Author(s):  
M. Waqas ◽  
M. Ijaz Khan ◽  
Faris Alzahrani ◽  
Aatef Hobiny

Entropy optimization or entropy plays vital roles in our understanding of numerous various diverse phenomena running from cosmology to science. Their significance is shown in regions of immediate practical interest like provision of global energy as well as in others of a progressively essential flavor, such as the source of order and unpredictability in nature. The purpose of this communication is to investigate some of ongoing and significant outcomes in a way that not only appeals to the entropy expert but also makes them available to the nonexpert looking for an outline of the field. This communication addresses the entropy optimized flow of hybrid nanofluid between two plates accounting Darcy–Forchheimer porous medium. Energy equation is developed through implementation of first law of thermodynamics subject to radiative flux, dissipation and Joule heating. MHD fluid is rotating with angular frequency [Formula: see text]. Total entropy rate obtained is subject to thermal irreversibility, friction or dissipation irreversibility, magnetic or Joule heating irreversibility and Darcy–Forchheimer irreversibility via second law of thermodynamics. The nonlinear ordinary system (differential equations) is tackled via homotopy method for series solutions. Behaviors of sundry variables on the velocity, skin friction, temperature, Nusselt number and entropy generation rate are discussed and presented through various plots. Schematic flow diagram is presented. Furthermore, skin friction (drag force) and Nusselt number are discussed numerically. Obtained results analyzed that the entropy rate increases subject to higher radiation parameter and Hartmann and Brinkman numbers.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 663 ◽  
Author(s):  
Muhammad Idrees Afridi ◽  
I. Tlili ◽  
Marjan Goodarzi ◽  
M. Osman ◽  
Najeeb Alam Khan

The flow and heat transfer analysis in the conventional nanofluid A l 2 O 3 − H 2 O and hybrid nanofluid C u − A l 2 O 3 − H 2 O was carried out in the present study. The present work also focused on the comparative analysis of entropy generation in conventional and hybrid nanofluid flow. The flows of both types of nanofluid were assumed to be over a thin needle in the presence of thermal dissipation. The temperature at the surface of the thin needle and the fluid in the free stream region were supposed to be constant. Modified Maxwell Garnet (MMG) and the Brinkman model were utilized for effective thermal conductivity and dynamic viscosity. The numerical solutions of the self-similar equations were obtained by using the Runge-Kutta Fehlberg scheme (RKFS). The Matlab in-built solver bvp4c was also used to solve the nonlinear dimensionless system of differential equations. The present numerical results were compared to the existing limiting outcomes in the literature and were found to be in excellent agreement. The analysis demonstrated that the rate of entropy generation reduced with the decreasing velocity of the thin needle as compared to the free stream velocity. The hybrid nanofluid flow with less velocity was compared to the regular nanofluid under the same circumstances. Furthermore, the enhancement in the temperature profile of the hybrid nanofluid was high as compared to the regular nanofluid. The influences of relevant physical parameters on flow, temperature distribution, and entropy generation are depicted graphically and discussed herein.


Sign in / Sign up

Export Citation Format

Share Document