scholarly journals Phylogenetic Curved Optimal Regression for Adaptive Trait Evolution

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 218
Author(s):  
Dwueng-Chwuan Jhwueng ◽  
Chih-Ping Wang

Regression analysis using line equations has been broadly applied in studying the evolutionary relationship between the response trait and its covariates. However, the characteristics among closely related species in nature present abundant diversities where the nonlinear relationship between traits have been frequently observed. By treating the evolution of quantitative traits along a phylogenetic tree as a set of continuous stochastic variables, statistical models for describing the dynamics of the optimum of the response trait and its covariates are built herein. Analytical representations for the response trait variables, as well as their optima among a group of related species, are derived. Due to the models’ lack of tractable likelihood, a procedure that implements the Approximate Bayesian Computation (ABC) technique is applied for statistical inference. Simulation results show that the new models perform well where the posterior means of the parameters are close to the true parameters. Empirical analysis supports the new models when analyzing the trait relationship among kangaroo species.

2019 ◽  
Vol 6 (1) ◽  
pp. 379-403 ◽  
Author(s):  
Mark A. Beaumont

Many of the statistical models that could provide an accurate, interesting, and testable explanation for the structure of a data set turn out to have intractable likelihood functions. The method of approximate Bayesian computation (ABC) has become a popular approach for tackling such models. This review gives an overview of the method and the main issues and challenges that are the subject of current research.


2017 ◽  
Author(s):  
Dang Liu ◽  
Martin Hunt ◽  
Isheng. J. Tsai

AbstractIdentification of synteny between genomes of closely related species is an important aspect of comparative genomics. However, it is unknown to what extent draft assemblies lead to errors in such analysis. To investigate this, we fragmented genome assemblies of model nematodes to various extents and conducted synteny identification and downstream analysis. We first show that synteny between species can be underestimated up to 40% and find disagreements between popular tools that infer synteny blocks. This inconsistency and further demonstration of erroneous gene ontology enrichment tests throws into question the robustness of previous synteny analysis when gold standard genome sequences remain limited. In addition, determining the true evolutionary relationship is compromised by assembly improvement using a reference guided approach with a closely related species. Annotation quality, however, has minimal effect on synteny if the assembled genome is highly contiguous. Our results highlight the need for gold standard genome assemblies for synteny identification and accurate downstream analysis.Author summaryGenome assemblies across all domains of life are currently produced routinely. Initial analysis of any new genome usually includes annotation and comparative genomics. Synteny provides a framework in which conservation of homologous genes and gene order is identified between genomes of different species. The availability of human and mouse genomes paved the way for algorithm development in large-scale synteny mapping, which eventually became an integral part of comparative genomics. Synteny analysis is regularly performed on assembled sequences that are fragmented, neglecting the fact that most methods were developed using complete genomes. Here, we systematically evaluate this interplay by inferring synteny in genome assemblies with different degrees of contiguation. As expected, our investigation reveals that assembly quality can drastically affect synteny analysis, from the initial synteny identification to downstream analysis. Importantly, we found that improving a fragmented assembly using synteny with the genome of a related species can be dangerous, as this a priori assumes a potentially false evolutionary relationship between the species. The results presented here re-emphasize the importance of gold standard genomes to the science community, and should be achieved given the current progress in sequencing technology.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Fábio K Mendes ◽  
Jesualdo A Fuentes-González ◽  
Joshua G Schraiber ◽  
Matthew W Hahn

We present a multispecies coalescent model for quantitative traits that allows for evolutionary inferences at micro- and macroevolutionary scales. A major advantage of this model is its ability to incorporate genealogical discordance underlying a quantitative trait. We show that discordance causes a decrease in the expected trait covariance between more closely related species relative to more distantly related species. If unaccounted for, this outcome can lead to an overestimation of a trait’s evolutionary rate, to a decrease in its phylogenetic signal, and to errors when examining shifts in mean trait values. The number of loci controlling a quantitative trait appears to be irrelevant to all trends reported, and discordance also affected discrete, threshold traits. Our model and analyses point to the conditions under which different methods should fare better or worse, in addition to indicating current and future approaches that can mitigate the effects of discordance.


2020 ◽  
Vol 9 (3) ◽  
pp. 160-170
Author(s):  
Thumadath P.A. Krishna ◽  
Maharajan Theivanayagam ◽  
Gurusunathan V. Roch ◽  
Veeramuthu Duraipandiyan ◽  
Savarimuthu Ignacimuthu

Finger millet is a superior staple food for human beings. Microsatellite or Simple Sequence Repeat (SSR) marker is a powerful tool for genetic mapping, diversity analysis and plant breeding. In finger millet, microsatellites show a higher level of polymorphism than other molecular marker systems. The identification and development of microsatellite markers are extremely expensive and time-consuming. Only less than 50% of SSR markers have been developed from microsatellite sequences for finger millet. Therefore, it is important to transfer SSR markers developed for related species/genus to finger millet. Cross-genome transferability is the easiest and cheapest method to develop SSR markers. Many comparative mapping studies using microsatellite markers clearly revealed the presence of synteny within the genomes of closely related species/ genus. Sufficient homology exists among several crop plant genomes in the sequences flanking the SSR loci. Thus, the SSR markers are beneficial to amplify the target regions in the finger millet genome. Many SSR markers were used for the analysis of cross-genome amplification in various plants such as Setaria italica, Pennisetum glaucum, Oryza sativa, Triticum aestivum, Zea mays and Hordeum vulgare. However, there is very little information available about cross-genome amplification of these markers in finger millet. The only limited report is available for the utilization of cross-genome amplified microsatellite markers in genetic analysis, gene mapping and other applications in finger millet. This review highlights the importance and implication of microsatellite markers such as genomic SSR (gSSR) and Expressed Sequence Tag (EST)-SSR in cross-genome analysis in finger millet. Nowadays, crop improvement has been one of the major priority areas of research in agriculture. The genome assisted breeding and genetic engineering plays a very crucial role in enhancing crop productivity. The rapid advance in molecular marker technology is helpful for crop improvement. Therefore, this review will be very helpful to the researchers for understanding the importance and implication of SSR markers in closely related species.


Sign in / Sign up

Export Citation Format

Share Document