scholarly journals An Extended Entropic Model for Cohesive Sediment Flocculation in a Piecewise Varied Shear Environment

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1263
Author(s):  
Zhongfan Zhu ◽  
Jie Dou

In this study, an extended model for describing the temporal evolution of a characteristic floc size of cohesive sediment particles when the flocculation system is subject to a piecewise varied turbulent shear rate was derived by the probability methods based on the Shannon entropy theory following Zhu (2018). This model only contained three important parameters: initial and steady-state values of floc size, and a parameter characterizing the maximum capacity for floc size increase (or decay), and it can be adopted to capture well a monotonic pattern in which floc size increases (or decays) with flocculation time. Comparison with 13 literature experimental data sets regarding floc size variation to a varied shear rate showed the validity of the entropic model with a high correlation coefficient and few errors. Furthermore, for the case of tapered shear flocculation, it was found that there was a power decay of the capacity parameter with the shear rate, which is similar to the dependence of the steady-state floc size on the shear rate. The entropic model was further parameterized by introducing these two empirical relations into it, and the finally obtained model was found to be more sensitive to two empirical coefficients that have been incorporated into the capacity parameter than those in the steady-state floc size. The proposed entropic model could have the potential, as an addition to existing flocculation models, to be coupled into present mature hydrodynamic models to model the cohesive sediment transport in estuarine and coastal regions.

1994 ◽  
Vol 344 ◽  
Author(s):  
Patrick T. Spicer ◽  
Sotiris E. Pratsinis

AbstractThe flocculation of polystyrene particles with aluminum sulfate or alum (Al2 (SO4)3) by turbulent shear was studied as a function of the applied shear rates (63–129 s−1) and flocculant concentrations (11 and 32 mg/L) in a stirred tank. Increasing the shear rate increased the floc growth rate but decreased the maximum attainable floc size. Increasing the concentration of alum increased the floc growth rate and the maximum floc size. A steady state between floc growth and breakage was attained after which the floc size distribution no longer changed. The normalized steady state size distributions allowed evaluation of the relative contributions of shear rate and flocculant concentration to the performance of the process.


2019 ◽  
Vol 19 (5) ◽  
pp. 1422-1428
Author(s):  
Zhongfan Zhu

Abstract A simple formula is developed to relate the size and settling velocity of cohesive sediment flocs in both the viscous and inertial settling ranges. This formula maintains the same basic structure as the existing formula but is amended to incorporate the fact that the flocculated sediment has an internal fractal architecture and is composed of different-sized primary particles. The input parameters needed for calculating the settling velocity include the median size and size distribution of the primary particles, the fractal dimension of the floc, the density of the sediment, and two calibrated coefficients that incorporate the effects of floc shape, permeability, and flow separation on drag. The proposed formula is compared with four data sets of settling velocity–floc size collected from the published literature, and a good agreement between the model and these data can be found.


1995 ◽  
Vol 31 (2) ◽  
pp. 193-204 ◽  
Author(s):  
Koen Grijspeerdt ◽  
Peter Vanrolleghem ◽  
Willy Verstraete

A comparative study of several recently proposed one-dimensional sedimentation models has been made. This has been achieved by fitting these models to steady-state and dynamic concentration profiles obtained in a down-scaled secondary decanter. The models were evaluated with several a posteriori model selection criteria. Since the purpose of the modelling task is to do on-line simulations, the calculation time was used as one of the selection criteria. Finally, the practical identifiability of the models for the available data sets was also investigated. It could be concluded that the model of Takács et al. (1991) gave the most reliable results.


2013 ◽  
Vol 235 ◽  
pp. 540-549 ◽  
Author(s):  
Petra Bubakova ◽  
Martin Pivokonsky ◽  
Petr Filip

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 999
Author(s):  
Ahmad Shakeel ◽  
Zeinab Safar ◽  
Maria Ibanez ◽  
Leon van Paassen ◽  
Claire Chassagne

The characteristics of clayey suspensions, majorly composed of quartz microparticles, in the presence of anionic and cationic polyelectrolytes were investigated using different techniques. A wide range of clay concentrations was used, i.e., from 0.07 to 1000 g/L for different experimental techniques, based on the fact that the clay concentration possible to analyze with selected experimental methods was significantly different. The optimum flocculant to clay ratio was defined as the ratio that gives the fastest initial floc growth by static light scattering or fastest initial settling velocity by settling column experiments. In case of anionic polyelectrolyte, it was observed that the optimum flocculant dose depends on the amount of cations present in the system. For suspensions made with demi-water, a lower optimum flocculant dose (<1 mg/g) than for suspensions prepared in tap water (2.28 mg/g) was observed. At these lower salinities, the supernatant remained turbid in all the experiments and was, therefore, not a good measure for optimal anionic based flocculation. The equilibrium floc size at a given shear rate was found to be independent on the shear history of the floc and only dependent on the current applied shear. This was confirmed by both light scattering and rheological analysis. In case of cationic polyelectrolyte, the optimum flocculant ratio (5–6 mg/g) corresponded to the ratio that gives the lowest electrophoretic mobility for each clay concentration and to the ratio that gives the fastest settling velocity for the highest clay concentrations (12–15 g/L), where static light scattering measurements were not possible. All investigation techniques, therefore, proved to be good indicators for predicting the optimum flocculant to clay ratio. For the lowest concentrations (1.75–8.7 g/L) studied by settling column measurements, the optimum flocculant ratio was observed to increase with decreasing clay concentration, for fixed mixing conditions. The optimum flocculant to clay ratio was not always corresponding to the clearest supernatant and the size of flocs at optimum dosage was dependent on the mixing efficiency. The equilibrium floc size at a given shear rate was found to be dependent on the shear history of the floc and the current applied shear. This was confirmed by both light scattering and rheological analysis.


2020 ◽  
Vol 22 (4) ◽  
pp. 251-263
Author(s):  
Timothy Cubitt ◽  
Ken Wooden ◽  
Erin Kruger ◽  
Michael Kennedy

Purpose Misconduct and deviance amongst police officers are substantial issues in policing around the world. This study aims to propose a prediction model for serious police misconduct by variation of the theory of planned behaviour. Design/methodology/approach Using two data sets, one quantitative and one qualitative, provided by an Australian policing agency, a random forest analysis and a qualitative content analysis was performed. Results were used to inform and extend the framework of the theory of planned behaviour. The traditional and extended theory of planned behaviour models were then tested for predictive utility. Findings Each model demonstrated noteworthy predictive power, however, the extended model performed particularly well. Prior instances of minor misconduct amongst officers appeared important in this rate of prediction, suggesting that remediation of problematic behaviour was a substantial issue amongst misconduct prone officers. Practical implications It is an important implication for policing agencies that prior misconduct was predictive of further misconduct. A robust complaint investigation and remediation process are pivotal to anticipating, remediating and limiting police misconduct, however, early intervention models should not be viewed as the panacea for police misconduct. Originality/value This research constitutes the first behavioural model for police misconduct produced in Australia. This research seeks to contribute to the field of behavioural prediction amongst deviant police officers, and offer an alternative methodology for understanding these behaviours.


1989 ◽  
Vol 163 ◽  
Author(s):  
F. F. Morehead ◽  
R. F. Lever

AbstractWe extend our earlier model which was proposed to explain tails in the diffusion profiles of high concentration boron and phosphorus in silicon. Our quasi-steady-state approach is generalized here to include both vacancies (V) and interstitials (I) at equivalent levels. I-V recombination is regarded as near local equilibrium, occurring through reactions of the defects with defect-impurity pairs. This approach leads to the well-known plateau, kink and tail in high surface concentration P diffusions in Si and to the less well recognized tails in B as well. Our extended model, in its simplest form, allows a more complete and less restrictive treatment of Au diffusion in Si. An important advantage is the direct inclusion of these defect-impurity interactions and the resulting gradients in the defect concentrations.


PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148895 ◽  
Author(s):  
Zhongfan Zhu ◽  
Hongrui Wang ◽  
Jingshan Yu ◽  
Jie Dou

2011 ◽  
Vol 339 ◽  
pp. 257-260 ◽  
Author(s):  
Hong Chao Luo ◽  
Shi Pu Chen ◽  
Qin Nie ◽  
En Sheng Xu ◽  
Li Ping Ju

In the present work, basing on the rheological model of Chen and Fan (CF) [1] of semisolid metal slurries (SSMS), the rheological behavior at steady state of AlSi6Mg2 alloy is investigated. Experimental results on steady state viscosity of the present system in the literature are used to determine the parameters of the CF model by fitting. It has been shown that the steady state viscosity and the average agglomerate size increase with increasing the solid volume fraction and decreasing the shear rate. The theoretical prediction of the CF model is in good agreement with the experimental results in the literatures quantitatively. The importance of the effective solid volume fraction is shown by explaining the strong coupling between the viscosity and the microstructure. Specifically, the external flow conditions such as shear rate influences the viscosity by changing the agglomeration degree of the solid particles, that is, the effective solid volume fraction and then changing the viscosity.


Sign in / Sign up

Export Citation Format

Share Document