scholarly journals Many-Body Localization and the Emergence of Quantum Darwinism

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1377
Author(s):  
Nicolás Mirkin ◽  
Diego A. Wisniacki

Quantum Darwinism (QD) is the process responsible for the proliferation of redundant information in the environment of a quantum system that is being decohered. This enables independent observers to access separate environmental fragments and reach consensus about the system’s state. In this work, we study the effect of disorder in the emergence of QD and find that a highly disordered environment is greatly beneficial for it. By introducing the notion of lack of redundancy to quantify objectivity, we show that it behaves analogously to the entanglement entropy (EE) of the environmental eigenstate taken as an initial state. This allows us to estimate the many-body mobility edge by means of our Darwinistic measure, implicating the existence of a critical degree of disorder beyond which the degree of objectivity rises the larger the environment is. The latter hints the key role that disorder may play when the environment is of a thermodynamic size. At last, we show that a highly disordered evolution may reduce the spoiling of redundancy in the presence of intra-environment interactions.


Author(s):  
E. J. Torres-Herrera ◽  
Lea F. Santos

A main feature of a chaotic quantum system is a rigid spectrum where the levels do not cross. We discuss how the presence of level repulsion in lattice many-body quantum systems can be detected from the analysis of their time evolution instead of their energy spectra. This approach is advantageous to experiments that deal with dynamics, but have limited or no direct access to spectroscopy. Dynamical manifestations of avoided crossings occur at long times. They correspond to a drop, referred to as correlation hole, below the asymptotic value of the survival probability and to a bulge above the saturation point of the von Neumann entanglement entropy and the Shannon information entropy. By contrast, the evolution of these quantities at shorter times reflects the level of delocalization of the initial state, but not necessarily a rigid spectrum. The correlation hole is a general indicator of the integrable–chaos transition in disordered and clean models and as such can be used to detect the transition to the many-body localized phase in disordered interacting systems. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.



Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anal Bhowmik ◽  
Sudip Kumar Haldar ◽  
Ofir E. Alon

AbstractTunneling in a many-body system appears as one of the novel implications of quantum physics, in which particles move in space under an otherwise classically-forbidden potential barrier. Here, we theoretically describe the quantum dynamics of the tunneling phenomenon of a few intricate bosonic clouds in a closed system of a two-dimensional symmetric double-well potential. We examine how the inclusion of the transverse direction, orthogonal to the junction of the double-well, can intervene in the tunneling dynamics of bosonic clouds. We use a well-known many-body numerical method, called the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. MCTDHB allows one to obtain accurately the time-dependent many-particle wavefunction of the bosons which in principle entails all the information of interest about the system under investigation. We analyze the tunneling dynamics by preparing the initial state of the bosonic clouds in the left well of the double-well either as the ground, longitudinally or transversely excited, or a vortex state. We unravel the detailed mechanism of the tunneling process by analyzing the evolution in time of the survival probability, depletion and fragmentation, and the many-particle position, momentum, and angular-momentum expectation values and their variances. As a general rule, all objects lose coherence while tunneling through the barrier and the states which include transverse excitations do so faster. In particular for the later states, we show that even when the transverse direction is seemingly frozen, prominent many-body dynamics in a two-dimensional bosonic Josephson junction occurs. Implications are briefly discussed.



Science ◽  
2019 ◽  
Vol 364 (6437) ◽  
pp. 260-263 ◽  
Author(s):  
Tiff Brydges ◽  
Andreas Elben ◽  
Petar Jurcevic ◽  
Benoît Vermersch ◽  
Christine Maier ◽  
...  

Entanglement is a key feature of many-body quantum systems. Measuring the entropy of different partitions of a quantum system provides a way to probe its entanglement structure. Here, we present and experimentally demonstrate a protocol for measuring the second-order Rényi entropy based on statistical correlations between randomized measurements. Our experiments, carried out with a trapped-ion quantum simulator with partition sizes of up to 10 qubits, prove the overall coherent character of the system dynamics and reveal the growth of entanglement between its parts, in both the absence and presence of disorder. Our protocol represents a universal tool for probing and characterizing engineered quantum systems in the laboratory, which is applicable to arbitrary quantum states of up to several tens of qubits.



2016 ◽  
Vol 71 (10) ◽  
pp. 875-881 ◽  
Author(s):  
Christoph Heinisch ◽  
Martin Holthaus

AbstractWe suggest to subject anharmonically trapped Bose–Einstein condensates to sinusoidal forcing with a smooth, slowly changing envelope, and to measure the coherence of the system after such pulses. In a series of measurements with successively increased maximum forcing strength, one then expects an adiabatic return of the condensate to its initial state as long as the pulses remain sufficiently weak. In contrast, once the maximum driving amplitude exceeds a certain critical value there should be a drastic loss of coherence, reflecting significant heating induced by the pulse. This predicted experimental signature is traced to the loss of an effective adiabatic invariant, and to the ensuing breakdown of adiabatic motion of the system’s Floquet state when the many-body dynamics become chaotic. Our scenario is illustrated with the help of a two-site model of a forced bosonic Josephson junction, but should also hold for other, experimentally accessible configurations.



2020 ◽  
Vol 75 (5) ◽  
pp. 403-411 ◽  
Author(s):  
Lennart Dabelow ◽  
Peter Reimann

AbstractEcho protocols provide a means to investigate the arrow of time in macroscopic processes. Starting from a nonequilibrium state, the many-body quantum system under study is evolved for a certain period of time τ. Thereafter, an (effective) time reversal is performed that would – if implemented perfectly – take the system back to the initial state after another time period τ. Typical examples are nuclear magnetic resonance imaging and polarisation echo experiments. The presence of small, uncontrolled inaccuracies during the backward propagation results in deviations of the “echo signal” from the original evolution and can be exploited to quantify the instability of nonequilibrium states and the irreversibility of the dynamics. We derive an analytic prediction for the typical dependence of this echo signal for macroscopic observables on the magnitude of the inaccuracies and on the duration τ of the process, and verify it in numerical examples.



2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Piero Naldesi ◽  
Elisa Ercolessi ◽  
Tommaso Roscilde

The many-body localization (MBL) transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from “extended/ergodic" (exhibiting extensive entanglement entropies and fluctuations) to “localized" (exhibiting area-law scaling of entanglement and fluctuations). The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder – if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using “quantum-quench spectroscopy", namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.



1987 ◽  
Vol 01 (03n04) ◽  
pp. 853-862 ◽  
Author(s):  
A. Bianconi ◽  
A. Clozza ◽  
A. Congiu Castellano ◽  
S. Della Longa ◽  
M. De Santis ◽  
...  

Cu L3 x-ray absorption near edge structure (XANES) and Cu L 3 x-ray photoelectron spectroscopy (XPS) of YBa2Cu3O6.5+x are compared. The breakdown of one-electron picture of its electronic structure is reported. The data are interpreted by mixing of Cu 3d9 and of [Formula: see text] (where [Formula: see text] is a hole in the oxygen derived band, ligand hole) many body configuration in the initial state. The localization of Cu 3d9 configuration is indicated by the bare Coulomb interaction Udd~6 eV . The conductivity is assigned to the itinerant [Formula: see text] configuration. The experimental evidence that the additional oxygen x, giving higher Tc , increases the weight of the [Formula: see text] configuration is reported. The presence of holes on the oxygen atoms is confirmed by the Ols XPS spectra. The Cu3+(Cu 3d8) configuration is not observed in L3 XANES in agreement with valence band XPS giving the energy of the 3d8 excited state at about 12 eV above the ground state. An energy scheme of the many body configurations in YBa2Cu3O~7 is obtained. These experiments give experimental evidence that the high Tc superconductivity is due to pairing of holes in the oxygen valence band interacting with localized electrons at the Cu sites.



2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Anirban Mukherjee ◽  
Siddhartha Patra ◽  
Siddhartha Lal

Abstract We perform a unitary renormalization group (URG) study of the 1D fermionic Hubbard model. The formalism generates a family of effective Hamiltonians and many-body eigenstates arranged holographically across the tensor network from UV to IR. The URG is realized as a quantum circuit, leading to the entanglement holographic mapping (EHM) tensor network description. A topological Θ-term of the projected Hilbert space of the degrees of freedom at the Fermi surface are shown to govern the nature of RG flow towards either the gapless Tomonaga-Luttinger liquid or gapped quantum liquid phases. This results in a nonperturbative version of the Berezenskii-Kosterlitz-Thouless (BKT) RG phase diagram, revealing a line of intermediate coupling stable fixed points, while the nature of RG flow around the critical point is identical to that obtained from the weak-coupling RG analysis. This coincides with a phase transition in the many-particle entanglement, as the entanglement entropy RG flow shows distinct features for the critical and gapped phases depending on the value of the topological Θ-term. We demonstrate the Ryu-Takyanagi entropy bound for the many-body eigenstates comprising the EHM network, concretizing the relation to the holographic duality principle. The scaling of the entropy bound also distinguishes the gapped and gapless phases, implying the generation of very different holographic spacetimes across the critical point. Finally, we treat the Fermi surface as a quantum impurity coupled to the high energy electronic states. A thought-experiment is devised in order to study entanglement entropy generated by isolating the impurity, and propose ways by which to measure it by studying the quantum noise and higher order cumulants of the full counting statistics.



2016 ◽  
Vol 94 (18) ◽  
Author(s):  
Xiongjie Yu ◽  
David J. Luitz ◽  
Bryan K. Clark


Sign in / Sign up

Export Citation Format

Share Document