Research on Assembly Process Simulation of Construction Machinery Arm Based on Digital Twin

2021 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Yunxi Zhang ◽  
Gangfeng Wang ◽  
Dong Zhang ◽  
Qi Zhang

The construction machinery arm is the key component of construction machinery to complete the operation task; its assembly link directly affects the product quality and operational performance of the whole machinery. To solve the problems of low assembly efficiency and the inability to fully reflect the assembly process indexes and product characteristics in the traditional construction machinery arm assembly, this paper studies assembly process modeling and simulation for the construction machinery arm based on assembly sensing data and digital twin. By extracting and processing the assembly resource data and field measurement data of the machinery arm, the assembly process information database under the digital twin environment is constructed, which lays the foundation for the virtual assembly model construction of the machinery arm. Through the real-time data interaction between virtual space and physical space, a complete assembly of digital twin spaces is formed. Finally, taking the assembly line of an excavator armed as an example, it is shown that the digital twin-based assembly simulation can monitor the assembly process in real-time and optimize its configuration to improve assembly efficiency. Therefore, an effective closed-loop feedback mechanism is constructed for the whole assembly process of the construction machinery arm.

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5504
Author(s):  
Hyang-A Park ◽  
Gilsung Byeon ◽  
Wanbin Son ◽  
Hyung-Chul Jo ◽  
Jongyul Kim ◽  
...  

Due to the recent development of information and communication technology (ICT), various studies using real-time data are now being conducted. The microgrid research field is also evolving to enable intelligent operation of energy management through digitalization. Problems occur when operating the actual microgrid, causing issues such as difficulty in decision making and system abnormalities. Using digital twin technology, which is one of the technologies representing the fourth industrial revolution, it is possible to overcome these problems by changing the microgrid configuration and operating algorithms of virtual space in various ways and testing them in real time. In this study, we proposed an energy storage system (ESS) operation scheduling model to be applied to virtual space when constructing a microgrid using digital twin technology. An ESS optimal charging/discharging scheduling was established to minimize electricity bills and was implemented using supervised learning techniques such as the decision tree, NARX, and MARS models instead of existing optimization techniques. NARX and decision trees are machine learning techniques. MARS is a nonparametric regression model, and its application has been increasing. Its performance was analyzed by deriving performance evaluation indicators for each model. Using the proposed model, it was found in a case study that the amount of electricity bill savings when operating the ESS is greater than that incurred in the actual ESS operation. The suitability of the model was evaluated by a comparative analysis with the optimization-based ESS charging/discharging scheduling pattern.


Digital Twin ◽  
2021 ◽  
Vol 1 ◽  
pp. 8
Author(s):  
Xiwang He ◽  
Yiming Qiu ◽  
Xiaonan Lai ◽  
Zhonghai Li ◽  
Liming Shu ◽  
...  

Background: With significant advancement and demand for digital transformation, the digital twin has been gaining increasing attention as it is capable of establishing real-time mapping between physical space and virtual space. In this work, a shape-performance integrated digital twin solution is presented to predict the real-time biomechanics of the lumbar spine during human movement. Methods: A finite element model (FEM) of the lumbar spine was firstly developed using computed tomography (CT) and constrained by the body movement which was calculated by the inverse kinematics algorithm. The Gaussian process regression was utilized to train the predicted results and create the digital twin of the lumbar spine in real-time. Finally, a three-dimensional virtual reality system was developed using Unity3D to display and record the real-time biomechanics performance of the lumbar spine during body movement. Results: The evaluation results presented an agreement (R-squared > 0.8) between the real-time prediction from digital twin and offline FEM prediction. Conclusions: This approach provides an effective method of real-time planning and warning in spine rehabilitation.


2021 ◽  
Vol 343 ◽  
pp. 03005
Author(s):  
Florina Chiscop ◽  
Bogdan Necula ◽  
Carmen Cristiana Cazacu ◽  
Cristian Eugen Stoica

The topic of this paper represents our research in the process of creating a virtual model (digital twin) for a fast-food company production chain starting with the moment when a customer launches an order, following with the processing of that order, until the customer receives it. The model will describe elements that are included in this process such as equipment, human resources and the necessary space that is needed to host this layout. The virtual model created in a simulation platform will be a replicate of a real fast-food company, thus helping us observe the real time dynamic of this production system. Using WITNESS HORIZON 23 we will construct the model of the layout based on real time data received from the fast-food company. This digital twin will be used to manage the production chain material flow, evaluating the performance of the system architecture in various scenarios. In order to obtain a diagnosis of the system’s performance we will simulate the workflow running through preliminary architecture in compliance with the real time behaviour to identify the bottlenecks and blockages in the flow trajectory. In the end we will propose two different optimised architectures for the fast-food company production chain.


2020 ◽  
Vol 306 ◽  
pp. 02005
Author(s):  
Jin Cao ◽  
Junliang Wang ◽  
Junqing Lu

Compressor is a typical high-end discrete product,with the shortening of product life cycle and the enhancement of the degree of product customization, the traditional compressor manufacturing system architecture cannot meet the requirements of comprehensive digital management of compressor from body scheme design to parts production line, logistics management, operation and maintenance monitoring and evaluation. This paper presents a compressor manufacturing system architecture based on digital twinning, and establishes an Internet platform for compressor industry oriented to remote coordination from three aspects of compressor design, production, operation and maintenance. The platform includes industrial Internet infrastructure layer, physical space entity model layer, virtual space multidimensional model layer, physical space and virtual space multidimensional model correlation and mapping layer, big data intelligent analysis decision-making layer, and digital twin application layer. Through the establishment of the compressor product design and simulation model of digital twin, compressor production process digital twin model, compressor fault diagnosis and remote operations digital twin model, implementation is based on the number of compressor collaboration in manufacturing industrial Internet platform twin system, leading the transformation and upgrading of intelligent manufacturing industry, compressor industry sustainable development ability and international competitiveness.


Author(s):  
Wesley Ellgass ◽  
Nathan Holt ◽  
Hector Saldana-Lemus ◽  
Julian Richmond ◽  
Ali Vatankhah Barenji ◽  
...  

With the developments and applications of the advanced information technologies such as cloud computing, internet of thing, artificial intelligence and virtual reality, industry 4.0 and smart manufacturing era are coming. In this respect, one of the specific challenges is to achieve a connection of physical resources on the shop floor with virtual resources, for real-time response, real time process optimization, and simulation, which is merged by big data problem. In this respect, Digital Twins (DT) concept is introduced as a key technology, which includes physical resources, virtual resources, service system, and digital twin data. DT considers current condition of physical resource and prediction of future events to make a responsive decision. However, due to the complexity of building a digital equivalent in virtual space to its physical counterpart, very little applications have been developed with this purpose, especially in the industrial manufacturing area. Therefore, the types of data and technology required to build the DT for a manufacturing system are presented in this work, trying to develop a framework of DT based manufacturing system, which is supported by the virtual reality for virtualization of physical resources.


2017 ◽  
Vol 9 ◽  
pp. 113-120 ◽  
Author(s):  
Thomas H.-J. Uhlemann ◽  
Christoph Schock ◽  
Christian Lehmann ◽  
Stefan Freiberger ◽  
Rolf Steinhilper

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1307
Author(s):  
Duansen Shangguan ◽  
Liping Chen ◽  
Jianwan Ding

The ever-increasing functional density and complexity of the satellite systems, the harsh space flight environment, as well as the cost reduction measures that require less operator involvement are increasingly driving the need to develop new approaches for fault diagnosis and health monitoring (FD-HM). The data-driven FD-HM approaches use signal processing or data mining to obtain implicit information for the operating state of the system, which is good at monitoring systems extensively and shallowly and is expected to reduce the workload of the operators. However, these approaches for the FD-HM of the satellite system are driven primarily by the historical data and some static physical data, with little consideration for the simulation data, real-time data, and data fusion between the two, so it is not fully competent for the real-time monitoring and maintenance of the satellite in orbit. To ensure the reliable operation of the complex satellite systems, this paper presents a new physical–virtual convergence approach, digital twin, for FD-HM. Moreover, we present an FD-HM application of the satellite power system to demonstrate the effectiveness of the proposed approach.


Author(s):  
Abhilasha J. Saroj ◽  
Somdut Roy ◽  
Angshuman Guin ◽  
Michael Hunter

Sign in / Sign up

Export Citation Format

Share Document