scholarly journals Facilitating Student Understanding through Incorporating Digital Images and 3D-Printed Models in a Human Anatomy Course

2021 ◽  
Vol 11 (8) ◽  
pp. 380
Author(s):  
Dzintra Kazoka ◽  
Mara Pilmane ◽  
Edgars Edelmers

Combining classical educational methods with interactive three-dimensional (3D) visualization technology has great power to support and provide students with a unique opportunity to use them in the study process, training, and/or simulation of different medical procedures in terms of a Human Anatomy course. In 2016, Rīga Stradiņš University (RSU) offered students the 3D Virtual Dissection Table “Anatomage” with possibilities of virtual dissection and digital images at the Department of Morphology. The first 3D models were printed in 2018 and a new printing course was integrated into the Human Anatomy curriculum. This study was focused on the interaction of students with digital images, 3D models, and their combinations. The incorporation and use of digital technologies offered students great tools for their creativity, increased the level of knowledge and skills, and gave them a possibility to study human body structures and to develop relationships between basic and clinical studies.

Neurosurgery ◽  
2019 ◽  
Vol 85 (2) ◽  
pp. E343-E349 ◽  
Author(s):  
David Bairamian ◽  
Shinuo Liu ◽  
Behzad Eftekhar

Abstract BACKGROUND Three-dimensional (3D) visualization of the neurovascular structures has helped preoperative surgical planning. 3D printed models and virtual reality (VR) devices are 2 options to improve 3D stereovision and stereoscopic depth perception of cerebrovascular anatomy for aneurysm surgery. OBJECTIVE To investigate and compare the practicality and potential of 3D printed and VR models in a neurosurgical education context. METHODS The VR angiogram was introduced through the development and testing of a VR smartphone app. Ten neurosurgical trainees from Australia and New Zealand participated in a 2-part interactive exercise using 3 3D printed and VR angiogram models followed by a questionnaire about their experience. In a separate exercise to investigate the learning curve effect on VR angiogram application, a qualified neurosurgeon was subjected to 15 exercises involving manipulating VR angiograms models. RESULTS VR angiogram outperformed 3D printed model in terms of resolution. It had statistically significant advantage in ability to zoom, resolution, ease of manipulation, model durability, and educational potential. VR angiogram had a higher questionnaire total score than 3D models. The 3D printed models had a statistically significant advantage in depth perception and ease of manipulation. The results were independent of trainee year level, sequence of the tests, or anatomy. CONCLUSION In selected cases with challenging cerebrovascular anatomy where stereoscopic depth perception is helpful, VR angiogram should be considered as a viable alternative to the 3D printed models for neurosurgical training and preoperative planning. An immersive virtual environment offers excellent resolution and ability to zoom, potentiating it as an untapped educational tool.


BMJ Open ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. e034900
Author(s):  
Qing-Yun Li ◽  
Qi Zhang ◽  
Chun Yan ◽  
Ye He ◽  
Mukuze Phillip ◽  
...  

ObjectiveTo evaluate the feasibility of a phone camera and cloud service-based workflow to image bone specimens and print their three-dimensional (3D) models for anatomical education.DesignThe images of four typical human bone specimens, photographed by a phone camera, were aligned and converted into digital images for incorporation into a digital model through the Get3D website and submitted to an online 3D printing platform to obtain the 3D printed models. The fidelity of the 3D digital, printed models relative to the original specimens, was evaluated through anatomical annotations and 3D scanning.SettingThe Morphologic Science Experimental Center, Central South University, China.ParticipantsSpecimens of four typical bones—the femur, rib, cervical vertebra and skull—were used to evaluate the feasibility of the workflow.Outcome measuresThe gross fidelity of anatomical features within the digital models and 3D printed models was evaluated first using anatomical annotations in reference to Netter’s Atlas of Human Anatomy. The measurements of the deviation were quantised and visualised for analysis in Geomagic Control 2015.ResultsAll the specimens were reconstructed in 3D and printed using this workflow. The overall morphology of the digital and 3D printed models displayed a large extent of similarity to the corresponding specimens from a gross anatomical perspective. A high degree of similarity was also noticed in the quantitative analysis, with distance deviations ≤2 mm present among 99% of the random sampling points that were tested.ConclusionThe photogrammetric digitisation workflow adapted in the present study demonstrates fairly high precision with relatively low cost and fewer equipment requirements. This workflow is expected to be used in morphological/anatomical science education, particularly in institutions and schools with limited funds or in certain field research projects involving the fast acquisition of 3D digital data on human/animal bone specimens or on other remains.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


2019 ◽  
Vol 21 (2) ◽  
pp. 27-37
Author(s):  
Dzintra Kažoka ◽  
Māra Pilmane

Abstract In medical education and preclinical, clinical and transdisciplinary studies, tutors should be able to perform and offer qualitative study courses with more articulated perspective on higher educational sustainable development in higher education. Digital images have found their direct way to education in different medical areas. The aims of the study are to assess and verify the impact of cross-sectional images on the study process of Human Anatomy. In 2018, two randomly selected groups of 200 students from 2nd study year, Faculty of Medicine (Rīga Stradiņš University) were asked by tutors to identify several anatomical structures, using a three-dimensional virtual dissection table “Anatomage”. Group I analyzed cross-sectional images after cutting and segmentation of human body with interactive tools. Group II studied X-ray pictures, computerized tomography scans and magnetic resonance images of different regions and systems. The present paper focuses on the rate of cross-sectional image effectiveness in both groups. Analyzed detailed images represent their role in teaching and learning of Human Anatomy. Interpretation of these medical images will require very deep anatomical knowledge from basic studies until clinical courses.


2020 ◽  
Vol 114 (5) ◽  
pp. 370-381
Author(s):  
Derrick W. Smith ◽  
Sandra A. Lampley ◽  
Bob Dolan ◽  
Greg Williams ◽  
David Schleppenbach ◽  
...  

Introduction: The emerging technology of three-dimensional (3D) printing has the potential to provide unique 3D modeling to support specific content in science, technology, engineering, and mathematics (STEM) education, particularly chemistry. Method: Seventeen ( n = 17) students with visual impairments were provided direct instruction on chemistry atomic orbital content and allowed to use either print or tactile graphics or 3D models in rotating order. Participants were asked specific content questions based upon the atomic orbitals. Results: The students were asked two sets of comprehension questions: general and specific. Overall, students’ responses for general questions increased per iteration regardless of which manipulative was used. For specific questions, the students answered more questions correctly when using the 3D model regardless of order. When asked about their perceptions toward the manipulatives, the students preferred the 3D model over print or tactile graphics. Discussion: The findings show the potential for 3D printed materials in learning complex STEM content. Although the students preferred the 3D models, they all mentioned that a combination of manipulatives helped them better understand the material. Implications for practitioners: Practitioners should consider the use of manipulatives that include 3D printed materials to support STEM education.


2014 ◽  
Vol 41 (10) ◽  
pp. 869-877 ◽  
Author(s):  
Gabriel B. Dadi ◽  
Timothy R.B. Taylor ◽  
Paul M. Goodrum ◽  
William F. Maloney

Engineering information delivery can be a source of inefficient communication of design, leading to construction rework and lower worker morale. Due to errors, omissions, and misinterpretations, there remains a great opportunity to improve the traditional documentation of engineering information that craft professionals use to complete their work. Historically, physical three dimensional (3D) models built by hand provided 3D physical representations of the project to assist in sequencing, visualization, and planning of critical construction activities. This practice has greatly diminished since the adoption of 3D computer-aided design (CAD) and building information modeling technologies. Recently, additive manufacturing (a.k.a. 3D printing) technologies have allowed for three dimensional printing of 3D CAD models. A cognitive experiment was established to measure the effectiveness of 2D drawings, a 3D computer model, and a 3D printed model in delivering engineering information to an end-user are scientifically measured. The 3D printed model outperformed the 2D drawings and 3D computer interface in productivity measures. This paper’s primary contribution to the body of knowledge is identification of how different mediums of engineering information influence the performance of a simple task execution.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Kay S. Hung ◽  
Michael J. Paulsen ◽  
Hanjay Wang ◽  
Camille Hironaka ◽  
Y. Joseph Woo

In recent years, advances in medical imaging and three-dimensional (3D) additive manufacturing techniques have increased the use of 3D-printed anatomical models for surgical planning, device design and testing, customization of prostheses, and medical education. Using 3D-printing technology, we generated patient-specific models of mitral valves from their pre-operative cardiac imaging data and utilized these custom models to educate patients about their anatomy, disease, and treatment. Clinical 3D transthoracic and transesophageal echocardiography images were acquired from patients referred for mitral valve repair surgery and segmented using 3D modeling software. Patient-specific mitral valves were 3D-printed using a flexible polymer material to mimic the precise geometry and tissue texture of the relevant anatomy. 3D models were presented to patients at their pre-operative clinic visit and patient education was performed using either the 3D model or the standard anatomic illustrations. Afterward, patients completed questionnaires assessing knowledge and satisfaction. Responses were calculated based on a 1–5 Likert scale and analyzed using a nonparametric Mann–Whitney test. Twelve patients were presented with a patient-specific 3D-printed mitral valve model in addition to standard education materials and twelve patients were presented with only standard educational materials. The mean survey scores were 64.2 (±1.7) and 60.1 (±5.9), respectively (p = 0.008). The use of patient-specific anatomical models positively impacts patient education and satisfaction, and is a feasible method to open new opportunities in precision medicine.


Author(s):  
Scott Neurauter ◽  
Sabrina Szeto ◽  
Matt Tindall ◽  
Yan Wong ◽  
Chris Wright

3D visualization is the process of displaying spatial data to simulate and model a real three dimensional space. Using 3D visualization, Geomatic professionals are enabling pipeline engineers to make better decisions by providing an increased understanding of potential costs earlier in the design process. This paper will focus on the value of visualizing Digital Elevation Model (DEM) data through the use of hillshades and imagery-draped 3D models. From free online DEM data to high resolution Light Detection and Ranging (LiDAR) derived DEM data, the increased availability allows for a broader use of 3D visualization techniques beyond 3D analysis. Of the numerous sources available, two DEM sources will be discussed in this paper, the free low resolution DEM (CDED Level 1) and the more costly but higher resolution LiDAR based DEM. Traditional methods of evaluating potential locations for route and facilities involved a significant cost for ground truthing. Through the use of 3D visualization products, multiple potential locations can be examined for suitability without the expense of field visits for every candidate site. By focusing on the selected candidate locations using a visual desktop study, the time and expense of ground truthing all of the potential sites can be reduced significantly. Exploiting the visual value of DEM permits a productive and cost efficient methodology for initial route and facility placement on hydrocarbon projects.


2020 ◽  
Vol 57 (8) ◽  
pp. 1041-1044
Author(s):  
Matthias Schlund ◽  
Jean-Marc Levaillant ◽  
Romain Nicot

Parental prenatal counseling is of paramount significance since parents often experience an emotional crisis with feelings of disappointment and helplessness. Three-dimensional (3D) printed model of the unborn child’s face presenting with cleft lip and palate, based on ultrasonographic information, could be used to provide visual 3D information, further enhancing the prospective parent’s comprehension of their unborn child’s pathology and morphology, helping them to be psychologically prepared and improving the communication with the caretaking team. Prospective parents appreciate if prenatal counseling is available with the most detailed information as well as additional resources. The technique necessary to create 3D models after ultrasonographic information is explained, and the related costs are evaluated. The use of such models in parental education is then discussed.


Author(s):  
Dzintra Kazoka ◽  
Mara Pilmane

There are various combinations of 3D printing technology and medical study process. The aim of this study was to summarize our first experience on 3D printing and outline how 3D printed models can be successfully used in Human Anatomy modern teaching and learning. In 2018 autumn semester, together with traditional methods, a three-dimensional (3D) printing has been introduced into Human Anatomy curriculum at Department of Morphology. In practical classes 39 groups of students from Faculty of Medicine 1st year together with 3 tutors used 3 different open source softwares to create anatomical models and prepared them for printing process. All anatomical models were produced using an FDM 3D printer, a Prusa i3 MK2 (Prusa Research). As methods for data collection were used our observational notes during teaching and learning, analysis of discussions between tutors and students, comments on the preparing and usability of the created and printed models. 3D printing technology offered students a powerful tool for their teaching, learning and creativity, provided possibility to show human body structures or variations. Presented data offered valuable information about current situation and these results were suitable for the further development of the Human Anatomy study course.


Sign in / Sign up

Export Citation Format

Share Document