scholarly journals Digital Implementation Method for Synchronous PWM Control of GaN Transistor at Zero-Crossing of Totem-Pole PFC in Energy Storage Applications

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Bongwoo Kwak ◽  
Jonghoon Kim

A digital control scheme for GaN transistor-based totem pole power factor correction (PFC) is proposed in this paper. At the zero crossing, the totem pole PFC has a discontinuous conduction mode (DCM) current section because of its driving method and circuit structure. In the DCM current section, when a typical synchronous switching technique is applied, the inductor current is reduced to less than zero, thereby reducing efficiency. Moreover, because of the nature of the circuit, power may be transferred in reverse. To prevent this, a new synchronous switch technique using the cycle by cycle (CBC) trip function of the digital signal processor (DSP) is proposed. This proposed technique turns off the synchronization switch according to the set DCM level. Consequently, even at a low DCM level, the inductor current is clamped to zero, enabling stable synchronous switching.

Author(s):  
Saber Krim ◽  
Soufien Gdaim ◽  
Abdellatif Mtibaa ◽  
Mohamed Faouzi Mimouni

<p>This paper proposes a digital implementation of the direct torque control (DTC) of an Induction Motor (IM) with an observation strategy on the Field Programmable Gate Array (FPGA). The hardware solution based on the FPGA is caracterised by fast processing speed due to the parallel processing. In this study the FPGA is used to overcome the limitation of the software solutions (Digital Signal Processor (DSP) and Microcontroller). Also, the DTC of IM has many drawbacks such as for example; The open loop pure integration has from the problems of integration especially at the low speed and the variation of the stator resistance due to the temperature. To tackle these problems we use the Sliding Mode Observer (SMO). This observer is used estimate the stator flux, the stator current and the stator resistance. The hardware implementation method is based on Xilinx System Generator (XSG) which a modeling tool developed by Xilinx for the design of implemented systems on FPGA; from the design of the DTC with SMO from XSG we can automatically generate the VHDL code. The model of the DTC with SMO has been designed and simulated using XSG blocks, synthesized with Xilinx ISE 12.4 tool and implemented on Xilinx Virtex-V FPGA.</p>


2003 ◽  
Vol 9 (11) ◽  
pp. 1285-1302
Author(s):  
Kougen Ma ◽  
J Melcher

In this paper we focus on the adaptive control of structural acoustics using intelligent structures with embedded piezoelectric (PZT) patches and low cost digital signal processor systems. After a discussion on the adaptive feedforward control scheme, a hybrid adaptive control scheme is proposed, which takes advantage of both feedback control and adaptive feedforward control. The two schemes are realized on a low-cost, small volume, convenient and universal digital signal processing (DSP) board. A carbon fiber reinforced polymer plate with two embedded PZT patches is developed and used in two experiments. The first experiment is adaptive interior noise control using the intelligent plate, in which the adaptive feedforward control scheme is employed. Obvious noise reduction is obtained for constant frequency, swept frequency and varying amplitude harmonic disturbances. The second experiment is adaptive control of sound-induced vibration of the plate, where two embedded PZT patches are used as an actuator and a sensor, respectively, and the hybrid adaptive controller is applied. The full vibration reduction for various harmonic excitations is obtained, verifying the advantage of the hybrid adaptive control. It is demonstrated that active control of structural acoustics can be efficiently achieved by employing intelligent structures, advanced adaptive control schemes and the low-cost DSP board.


2016 ◽  
Vol 25 (11) ◽  
pp. 1650133 ◽  
Author(s):  
Meng Wang ◽  
Yanyan Shi

For a fully digital control of PWM converters, considerable research has been done based on the predictive current control (PCC) scheme. However, it requires a large amount of calculation in the step of experimental implementation. Besides, when compared with the classical linear control scheme, the sampling interval of the PCC scheme must be shorter to obtain the same control performance for current. Due to this, a digital signal processor with excellent performance is required. This paper proposes an improved simplified model PCC scheme for three-phase PWM converters. The main objective is to simplify the PCC scheme. Also, the proposed control scheme is able to reduce the calculation time without affecting the performance. Simulations and experiments are carried out to investigate the presented novel predictive current control scheme. The results indicate that the three-phase PWM converter has excellent static and dynamic performance with the proposed scheme. Besides, the calculation time can be obviously shortened.


2019 ◽  
Vol 16 (6) ◽  
pp. 782-790
Author(s):  
Mohsen Karimi ◽  
Mohammad Pichan ◽  
Mehdi Sadri ◽  
Seyed Morteza Seyedjafari

Purpose This paper aims to investigate an improved control method and digital signal processor-based (DSP-based) digital implementation of three-phase standalone inverter. The proposed method is performance developed of the proportional-resonant controller (PRC) with harmonic injection technique, aiming to improve load voltages quality under different loads, especially nonlinear loads. The advanced proposed multi-loop controller is consisted of current harmonic loops for suppressing odd harmonic, which are analyzed in discrete-time domain. Besides, the voltage loop is also used to compensate the output capacitor voltage. Design/methodology/approach The proposed method can effectively enlarge output voltage stability with low total harmonics distortion and improve the dynamic transient response. The other advantage of the proposed PRC is the injection of the selective harmonic without any additional calculation compensator. Findings The method is given the opportunity to be controlled exactly all harmful outputs with high-quality voltage referenced of the standalone inverter. The proposed method is implemented using a DSP processor (TMS320F28335) and is verified on the 10 kVA three-phase standalone inverter prototype. Originality/value The proposed method is performance developed of the PRC with harmonic injection technique, aiming to improve load voltages quality under different loads, especially nonlinear loads.


2021 ◽  
Author(s):  
Chaozheng Ma

This project investigates the application of model reference adaptive system (MRAS) for the speed sensorless control of an induction motor. The rotor speed can be accurately estimated by employing the closed-loop observer named reactive MRAS. Therefore, this observer eliminates the need of a speed sensor for the control of the motor speed. The method is robust to stator and rotor resistance variations due to change of temperature. The dynamic system equations of the induction machines are formulated, and the motor control system performance is studied. Both scalar voltage-to-frequency (V/f) control and vector field oriented control (FOC) schemes, implemented using digital signal processor (DSP), are investigated. The design of the speed sensorless DSP-based controller is completed. Software packages have been developed to implement the design. An experimental system using the proposed controller has been built. Various tests have been conducted to verify the technical feasibility of the control technique. The experimental results confirm the feasibility of the proposed speed sensorless V/f control scheme using MRAS speed estimator. The designed V/f profile has been tested. Even with step change of the load or that of the command speed, the system can achieve the correct steady state after a short transient operation. The experimental results also confirm the feasibility of the proposed speed sensorless FOC control scheme using MRAS speed estimator. The current regulators meet the design requirements. Both the flux-producing current component and the torque-producing current component can be controlled separately. In the implementation, digital signal processor (DSP) TMS320 FL2407 and voltage source inverter (VSI) Skiip 342GD120-316CTV are employed. The modular strategy is adopted to develop the software package.


2015 ◽  
Vol 734 ◽  
pp. 692-696 ◽  
Author(s):  
Yong Tao Liu ◽  
Hui Jun Wang ◽  
Jia Liu ◽  
Wei Wei Xu

In this paper, we study a kind of method which using DSP processor to control the reactive power compensation of generator. In the main circuit, power electronic switching devices on all control type (IGBT) is used as the main device of inverter, and controlled by SVPWM technology on and off to produce pulse. The generator to a digital signal processor as the core processor, the processor can quickly complete the data processing and real-time data sampled signal calculation tasks, the power system to achieve a fast response of the dynamic compensation, given the various modules of the system program flowchart.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1793
Author(s):  
Rodrigo Daniel Méndez-Ramírez ◽  
Adrian Arellano-Delgado ◽  
Miguel Angel Murillo-Escobar ◽  
César Cruz-Hernández

This work presents a new four-dimensional autonomous hyperchaotic system based on Méndez-Arellano-Cruz-Martínez (MACM) 3D chaotic system. Analytical and numerical studies of the dynamic properties are conducted for the new hyperchaotic system (NHS) in its continuous version (CV), where the Lyapunov exponents are calculated. The CV of the NHS is simulated and implemented using operational amplifiers (OAs), whereas the Discretized Version (DV) is simulated and implemented in real-time. Besides, a novel study of the algorithm performance of the proposed DV of NHS is conducted with the digital-electronic implementation of the floating-point versus Q1.15 fixed-point format by using the Digital Signal Processor (DSP) engine of a 16-bit dsPIC microcontroller and two external dual digital to analog converters (DACs) in an embedded system (ES).


2021 ◽  
Author(s):  
Chaozheng Ma

This project investigates the application of model reference adaptive system (MRAS) for the speed sensorless control of an induction motor. The rotor speed can be accurately estimated by employing the closed-loop observer named reactive MRAS. Therefore, this observer eliminates the need of a speed sensor for the control of the motor speed. The method is robust to stator and rotor resistance variations due to change of temperature. The dynamic system equations of the induction machines are formulated, and the motor control system performance is studied. Both scalar voltage-to-frequency (V/f) control and vector field oriented control (FOC) schemes, implemented using digital signal processor (DSP), are investigated. The design of the speed sensorless DSP-based controller is completed. Software packages have been developed to implement the design. An experimental system using the proposed controller has been built. Various tests have been conducted to verify the technical feasibility of the control technique. The experimental results confirm the feasibility of the proposed speed sensorless V/f control scheme using MRAS speed estimator. The designed V/f profile has been tested. Even with step change of the load or that of the command speed, the system can achieve the correct steady state after a short transient operation. The experimental results also confirm the feasibility of the proposed speed sensorless FOC control scheme using MRAS speed estimator. The current regulators meet the design requirements. Both the flux-producing current component and the torque-producing current component can be controlled separately. In the implementation, digital signal processor (DSP) TMS320 FL2407 and voltage source inverter (VSI) Skiip 342GD120-316CTV are employed. The modular strategy is adopted to develop the software package.


2000 ◽  
Vol 123 (3) ◽  
pp. 363-369
Author(s):  
Mi-Ching Tsai

In this paper the H∞ robust control technique is applied to design a switched reluctance motor drive where the rotor position sensor provides just six pulses per revolution. A control system analyzer is used to obtain the frequency responses at each design step. To reduce the effect of the inherent phase inductance variations, an H∞ two-degree-of-freedom control scheme is designed in the current-loop of the drive to achieve the demanding time-response specifications. In order to have a good load torque disturbance rejection ability, the H∞ loop shaping procedure is employed to construct a lead-lag type controller in the speed-loop of the drive. The designed H∞ controllers are evaluated in real-time experiments with a digital signal processor (DSP). The results demonstrate the effectiveness of the proposed strategy in comparison with that of a conventional design.


2013 ◽  
Vol 336-338 ◽  
pp. 19-22
Author(s):  
Bai Fen Liu ◽  
Ying Gao

Digital control algorithm common neural networks, fuzzy control, digital PID digital PID technology used widely and mature, the digital PID proportional, integral, derivative control the abbreviation. These advantages: simple in principle, applicability; little within the small range of the controlled object parameter changes on the performance indicators, a great guarantee the validity of the regulation. PID is the most successful control strategy in the analog control technology, digitized; people naturally will this control strategy is grafted onto the digital control technology. The system is digital PID.Used to implement a digital control chip has many, e.g., microcontroller, field programmable gate arrays (FPGAs), digital signal processor (DSP) and the microcontroller (ARM). SCM is the first large-scale application of the controller, but due to the speed of operation and the median can not meet the growing industrial control requirements. .


Sign in / Sign up

Export Citation Format

Share Document