scholarly journals Dual-Band MIMO Antenna for 5G/WLAN Mobile Terminals

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 489
Author(s):  
Jianlin Huang ◽  
Guiting Dong ◽  
Qibo Cai ◽  
Zhizhou Chen ◽  
Limin Li ◽  
...  

This paper presents a dual-band four-element multiple-input-multiple-output (MIMO) array for the fifth generation (5G) mobile communication. The proposed antenna is composed of an open-loop ring resonator feeding element and a T-shaped radiating element. The utilization of the open-loop ring resonator not only reduces the size of the antenna element, but also provides positive cross-coupling. The dimension of a single antenna element is 14.9 mm × 7 mm (0.27λ × 0.13λ, where λ is the wavelength of 5.5 GHz). The MIMO antenna exhibits a dual-band feature from 3.3 to 3.84 GHz and 4.61 to 5.91 GHz, which can cover 5G New Radio N78 (3.3–3.8 GHz), 5G China Band N79 (4.8–5 GHz), and IEEE 802.11 ac (5.15–5.35 GHz, 5.725–5.85 GHz). The measured total efficiency and isolation are better than 70% and 15 dB, respectively. The calculated envelope correlation coefficient (ECC) is less than 0.02. The measured results are in good agreement with the simulated results.

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 542 ◽  
Author(s):  
Jianlin Huang ◽  
Guiting Dong ◽  
Jing Cai ◽  
Han Li ◽  
Gui Liu

A quad-port antenna array operating in 3.5 GHz band (3.4–3.6 GHz) and 5 GHz band (4.8–5 GHz) for fifth-generation (5G) smartphone applications is presented in this paper. The single antenna element consists of an L-shaped strip, a parasitic rectangle strip, and a modified Z-shaped strip. To reserve space for 2G/3G/4G antennas, the quad-port antenna array is printed along the two long frames of the smartphone. The evolution design and the analysis of the optimal parameters of a single antenna element are derived to investigate the principle of the antenna. The prototype of the presented antenna is tested and the measured results agree well with the simulation. The measured total efficiency is better than 70% and the isolation is larger than 16.5 dB.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 136
Author(s):  
Jianlin Huang ◽  
Zhuoni Chen ◽  
Qibo Cai ◽  
Tian Hong Loh ◽  
Gui Liu

A multiple-input-multiple-output (MIMO) antenna array for triple-band 5G metal-frame smartphone applications is proposed in this paper. Each single antenna element consists of an S-shaped feeding strip and an L-shaped radiation strip on the metal frame. The dimension of the antenna element is only 6.5 mm × 7 mm (0.076 λ0 × 0.082 λ0, λ0 is the free-space wavelength at the frequency of 3.5 GHz). The −6 dB impedance bandwidth of the proposed eight-antenna array can cover 3.3–3.8 GHz, 4.8–5 GHz, and 5.15–5.925 GHz. The evolution design and the analysis of the optimal parameters for a single antenna element are derived to investigate the principle of the antenna. The measured total efficiency is larger than 70%. The measured isolation is better than 13 dB. The measurements of the prototype agree well with the simulation results.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Abubaker Ahmed Elobied ◽  
Xue-Xia Yang ◽  
Ningjie Xie ◽  
Steven Gao

This paper presents a close-spaced dual-band 2 × 2 multiple-input multiple-output (MIMO) antenna with high isolation based on half-mode substrate integrated waveguide (HMSIW). The dual-band operation of the antenna element is achieved by loading a rectangular patch outside the radiating aperture of an HMSIW cavity. The HMSIW cavity is excited by a coaxial probe, whereas the rectangular patch is energized through proximity coupling by the radiating aperture of HMSIW. The antenna elements can be closely placed using the rotation and orthogonal arrangement for a 2 × 2 array. Small neutralization lines at the center of the MIMO antenna can increase the isolation among its elements by around 10 dB in the lower band and 5 dB in the higher band. A prototype of the MIMO antenna is fabricated and its performance is measured. The measured results show that the resonant frequencies are centered at 4.43 and 5.39 GHz with bandwidths of 110 and 80 MHz and peak gains of 6 and 6.4 dBi, respectively. The minimum isolation in both bands is greater than 35 dB. The envelope correlation coefficient is lower than 0.005 within two operating bands.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Ahmad Salamin ◽  
Niamat Hussain

Abstract In this work, a unique wideband multiple-input multiple-output (MIMO) antenna for fifth-generation (5G) applications is introduced. Each antenna element in the MIMO system is formed using a modified parasitic ring. To improve the performance of the antenna, a rectangular-shaped region is etched into the opposite side of each element in the ground plane. The proposed MIMO antenna is designed on a commercially available FR-4 substrate, having total dimensions of 100 × 60 × 0.8 mm3. Most interestingly, the antenna has a measured bandwidth from 2.60 to 5.97 GHz. This will effectively encompass the most predicted feasible bands for futuristic 5G communications, including 5G new radio frequency bands (N77/N78/N79) and long-term evolution (LTE) 46 band. The performance of a single antenna is evaluated in terms of S-parameters, gain, radiation patterns and efficiency. The performance of the MIMO system is also evaluated in terms of the envelope correlation coefficient (ECC) and diversity gain (DG). The designed antenna is fabricated, and the simulation results are verified practically. Good agreement is reached between simulation and measurement results. The proposed design is a good choice for 5G applications that require wideband capabilities.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 767
Author(s):  
Muhammad Ali Jamshed ◽  
Masood Ur-Rehman ◽  
Jaroslav Frnda ◽  
Ayman A. Althuwayb ◽  
Ali Nauman ◽  
...  

The increasing popularity of using wireless devices to handle routine tasks has increased the demand for incorporating multiple-input-multiple-output (MIMO) technology to utilize limited bandwidth efficiently. The presence of comparatively large space at the base station (BS) makes it straightforward to exploit the MIMO technology’s useful properties. From a mobile handset point of view, and limited space at the mobile handset, complex procedures are required to increase the number of active antenna elements. In this paper, to address such type of issues, a four-element MIMO dual band, dual diversity, dipole antenna has been proposed for 5G-enabled handsets. The proposed antenna design relies on space diversity as well as pattern diversity to provide an acceptable MIMO performance. The proposed dipole antenna simultaneously operates at 3.6 and 4.7 sub-6 GHz bands. The usefulness of the proposed 4×4 MIMO dipole antenna has been verified by comparing the simulated and measured results using a fabricated version of the proposed antenna. A specific absorption rate (SAR) analysis has been carried out using CST Voxel (a heterogeneous biological human head) model, which shows maximum SAR value for 10 g of head tissue is well below the permitted value of 2.0 W/kg. The total efficiency of each antenna element in this structure is −2.88, −3.12, −1.92 and −2.45 dB at 3.6 GHz, while at 4.7 GHz are −1.61, −2.19, −1.72 and −1.18 dB respectively. The isolation, envelope correlation coefficient (ECC) between the adjacent ports and the loss in capacity is below the standard margin, making the structure appropriate for MIMO applications. The effect of handgrip and the housing box on the total antenna efficiency is analyzed, and only 5% variation is observed, which results from careful placement of antenna elements.


2021 ◽  
Author(s):  
satish kumar ◽  
Gunasekaran Thangavel ◽  
Said Amer Salim Al Ismaili Ismaili ◽  
Balambigai Subramanian

Abstract For the operation of 2.45GHz ISM band, a 2x2 Multiple Input Multiple Output (MIMO) antenna system is designed and fabricated. Complementary Split Ring Resonator (CSRR) is used in the MIMO patch and loaded on its ground plane to miniaturize the single antenna element. The single patch antenna element of 14x18 mm2 is fixed in a board of the Designed MIMO antennae system measuring 100x50x0.8 mm3. The antenna is tested by measuring radiation pattern, gain, VSWR, mutual coupling and return loss. The results of the Designed antenna systems are in good agreement with the simulations. In comparison to a conventional microstrip antenna, the Designed antenna achieves a 75% reduction in the resonant frequency.


2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


Author(s):  
M. Saravanan ◽  
R. Kalidoss ◽  
B. Partibane ◽  
K. S. Vishvaksenan

Abstract The design, analysis, fabrication, and testing of a four-port multiple-input multiple-output (MIMO) antenna is reported in this paper for automotive communications. The MIMO antenna is constructed using the basic antenna element exploiting a slot geometry. Two such antennas are developed on the same microwave laminate to develop a two-port MIMO antenna. Two such microwave laminates are interlocked to create the four-port MIMO scheme. The most distinct feature of the proposed architecture is that the inter-port isolation is well-taken care without the need for an external decoupling unit. The four-port MIMO antenna has an overall volume of 32 × 15 × 32 mm3. The prototype MIMO antenna is fabricated and the measurements are carried out to validate the simulation results. The antenna offers ultra-wideband (UWB) characteristics covering the frequency range of 2.8–9.5 GHz. The average boresight gain of the antenna ranges from 3.2 to 5.41 dBi with the peak gain at 8 GHz. The simulated efficiency of the antenna is greater than 73% within the operating bandwidth. The MIMO parameters such as envelope correlation coefficient, diversity gain, and mean effective gain are evaluated and presented. The appropriateness of the proposed antenna for deployment in the shark fin housing of the present-day automobiles is verified using on-car performance estimation.


2019 ◽  
Vol 57 (2) ◽  
pp. 223
Author(s):  
Hoa Nguyen Thi Quynh ◽  
Sy Tuan Tran ◽  
Huu Lam Phan ◽  
Duy Tung Phan

A compact three-port metamaterial multiple-input-multiple-output (MIMO) antenna using complementary split-ring resonator (CSRR) loaded ground have demonstrated in order to miniaturize the size and improve the antenna performance. The antenna is designed on FR4 material and simulated by HFSS software. By loading CSRRs in the ground plane, the size reduction of 77% of the individual patch antenna element is achieved, which appeared to be the major reason for the obtained the compact MIMO antenna. Furthermore, the simulated results show that the proposed MIMO antenna achieves the total gain higher than 5 dB, the isolation less than -11 dB, the envelope correlation coefficient (ECC) value lower than 0.015, and the bandwidth of 100 MHz through the whole WLAN band from 2.4 GHz to 2.484 GHz, indicating promises for WLAN applications.


2011 ◽  
Vol 8 ◽  
pp. 19-24 ◽  
Author(s):  
Nopparat Thammawongsa ◽  
Ravee Phromloungsri ◽  
Krissanapong Somsuk ◽  
Pichai Arunvipas

Sign in / Sign up

Export Citation Format

Share Document