scholarly journals Embedded System-Based Sticky Paper Trap with Deep Learning-Based Insect-Counting Algorithm

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1754
Author(s):  
József Sütő

Flying insect detection, identification, and counting are the key components of agricultural pest management. Insect identification is also one of the most challenging tasks in agricultural image processing. With the aid of machine vision and machine learning, traditional (manual) identification and counting can be automated. To achieve this goal, a particular data acquisition device and an accurate insect recognition algorithm (model) is necessary. In this work, we propose a new embedded system-based insect trap with an OpenMV Cam H7 microcontroller board, which can be used anywhere in the field without any restrictions (AC power supply, WIFI coverage, human interaction, etc.). In addition, we also propose a deep learning-based insect-counting method where we offer solutions for problems such as the “lack of data” and “false insect detection”. By means of the proposed trap and insect-counting method, spraying (pest swarming) could then be accurately scheduled.

2020 ◽  
pp. 1-12
Author(s):  
Hu Jingchao ◽  
Haiying Zhang

The difficulty in class student state recognition is how to make feature judgments based on student facial expressions and movement state. At present, some intelligent models are not accurate in class student state recognition. In order to improve the model recognition effect, this study builds a two-level state detection framework based on deep learning and HMM feature recognition algorithm, and expands it as a multi-level detection model through a reasonable state classification method. In addition, this study selects continuous HMM or deep learning to reflect the dynamic generation characteristics of fatigue, and designs random human fatigue recognition experiments to complete the collection and preprocessing of EEG data, facial video data, and subjective evaluation data of classroom students. In addition to this, this study discretizes the feature indicators and builds a student state recognition model. Finally, the performance of the algorithm proposed in this paper is analyzed through experiments. The research results show that the algorithm proposed in this paper has certain advantages over the traditional algorithm in the recognition of classroom student state features.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


2021 ◽  
Vol 11 (11) ◽  
pp. 4922
Author(s):  
Tengfei Ma ◽  
Wentian Chen ◽  
Xin Li ◽  
Yuting Xia ◽  
Xinhua Zhu ◽  
...  

To explore whether the brain contains pattern differences in the rock–paper–scissors (RPS) imagery task, this paper attempts to classify this task using fNIRS and deep learning. In this study, we designed an RPS task with a total duration of 25 min and 40 s, and recruited 22 volunteers for the experiment. We used the fNIRS acquisition device (FOIRE-3000) to record the cerebral neural activities of these participants in the RPS task. The time series classification (TSC) algorithm was introduced into the time-domain fNIRS signal classification. Experiments show that CNN-based TSC methods can achieve 97% accuracy in RPS classification. CNN-based TSC method is suitable for the classification of fNIRS signals in RPS motor imagery tasks, and may find new application directions for the development of brain–computer interfaces (BCI).


2021 ◽  
Vol 25 (4) ◽  
pp. 809-823
Author(s):  
Qing Ye ◽  
Haoxin Zhong ◽  
Chang Qu ◽  
Yongmei Zhang

Human activity recognition is a key technology in intelligent video surveillance and an important research direction in the field of computer vision. However, the complexity of human interaction features and the differences in motion characteristics at different time periods have always existed. In this paper, a human interaction recognition algorithm based on parallel multi-feature fusion network is proposed. First of all, in view of the different amount of information provided by the different time periods of action, an improved time-phased video down sampling method based on Gaussian model is proposed. Second, the Inception module uses different scale convolution kernels for feature extraction. It can improve network performance and reduce the amount of network parameters at the same time. The ResNet module mitigates degradation problem due to increased depth of neural networks and achieves higher classification accuracy. The amount of information provided in the motion video in different stages of motion time is also different. Therefore, we combine the advantages of the Inception network and ResNet to extract feature information, and then we integrate the extracted features. After the extracted features are merged, the training is continued to realize parallel connection of the multi-feature neural network. In this paper, experiments are carried out on the UT dataset. Compared with the traditional activity recognition algorithm, this method can accomplish the recognition tasks of six kinds of interactive actions in a better way, and its accuracy rate reaches 88.9%.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuanyuan Xu ◽  
Genke Yang ◽  
Jiliang Luo ◽  
Jianan He

Electronic component recognition plays an important role in industrial production, electronic manufacturing, and testing. In order to address the problem of the low recognition recall and accuracy of traditional image recognition technologies (such as principal component analysis (PCA) and support vector machine (SVM)), this paper selects multiple deep learning networks for testing and optimizes the SqueezeNet network. The paper then presents an electronic component recognition algorithm based on the Faster SqueezeNet network. This structure can reduce the size of network parameters and computational complexity without deteriorating the performance of the network. The results show that the proposed algorithm performs well, where the Receiver Operating Characteristic Curve (ROC) and Area Under the Curve (AUC), capacitor and inductor, reach 1.0. When the FPR is less than or equal 10 − 6   level, the TPR is greater than or equal to 0.99; its reasoning time is about 2.67 ms, achieving the industrial application level in terms of time consumption and performance.


2012 ◽  
Vol 460 ◽  
pp. 266-270
Author(s):  
Xing Wu Sun ◽  
Yu Chen ◽  
Ai Fei Wang

According to the shortcomings of large volume and high cost about the plate recognition system, an embedded plate recognition system is developed based on the ARM11 processor at lower costs. Taking the embedded Linux system as the software development platform, the system uses graphical user interface to operate and control the machine. Using CMOS camera system as image acquisition device, the system adopts HSV algorithm to realize the image classification on the platform of the embedded plate recognition system. The experimental results show that the embedded system runs stably, can realize the plate classification by color, and has the advantages of small size, low power consumption, convenience for using and so on. The embedded system provides a new thought for plate recognition.


Sign in / Sign up

Export Citation Format

Share Document