scholarly journals Artificial Jellyfish Search Algorithm-Based Selective Harmonic Elimination in a Cascaded H-Bridge Multilevel Inverter

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2402
Author(s):  
Nimra Idris Siddiqui ◽  
Afroz Alam ◽  
Layeba Quayyoom ◽  
Adil Sarwar ◽  
Mohd Tariq ◽  
...  

This paper used an artificial jellyfish search (AJFS) optimizer suitable for selective harmonic elimination-based modulation for multilevel inverter (MLI) voltage control application. The main objective was to remove the undesired lower-order harmonics in the output voltage waveform of an MLI. This algorithm was motivated by the behavior of jellyfish in the ocean. Jellyfish have the ability to find the global best position where a large quantity of nutritious food is available. The paper applied AJFS algorithm on five, seven, and nine levels of CHB-MLI. The optimum switching angle was calculated for the entire modulation range for the desired lower-order harmonics elimination. The problem formulated to achieve the objective was solved in a MATLAB environment. The total harmonic distortion (THD) values of five-, seven-, and nine-level inverters for various modulation indexes were computed using AJFS and compared with the powerful differential evolution (DE) algorithm. The comparison of THD results clearly demonstrated superior THD in the output of CHB-MLI of the AJFS algorithm over DE and GA algorithm for low and medium values of modulation index. The experimental results further validated the better performance of the AJFS algorithm.

Author(s):  
T. Porselvi ◽  
K. Deepa ◽  
R. Muthu

Harmonic elimination at the fundamental frequency is very much appropriate for high and medium range of power generation and applications. This paper considers a new technique for selective harmonic elimination (SHE), in which the total harmonic distortion (THD) is minimized when compared with that of the conventional one. With this technique, the harmonics at lower order are eliminated, which are more predominant than the higher ones.Cascaded H-Bridge inverter fed by a single DC is considered which is simulated with the switching angles generated by both the conventional method of SHE and the new method of SHE. The simulated results of the load voltage and the waveforms of the harmonic analysis are shown. The THD values are compared for the two techniques.  The experimental results are also shown for the new technique. The switching angles are generated with the help of field programmable gated array (FPGA) in the hardware. The value of experimental THD of voltage is compared with that of simulated THD and the comparison prove that the results are satisfactory.


2014 ◽  
Vol 63 (2) ◽  
pp. 187-196
Author(s):  
R. Kavitha ◽  
Rani Thottungal

Abstract Harmonic minimisation in hybrid cascaded multilevel inverter involves complex nonlinear transcendental equation with multiple solutions. Hybrid cascaded multilevel can be implemented using reduced switch count when compared to traditional cascaded multilevel inverter topology. In this paper Biogeographical Based Optimisation (BBO) technique is applied to Hybrid multilevel inverter to determine the optimum switching angles with weighted total harmonic distortion (WTHD) as the objective function. Optimisation based on WTHD combines the advantage of both OMTHD (Optimal Minimisation of Total Harmonic Distortion) and SHE (Selective Harmonic Elimination) PWM. WTHD optimisation has the benefit of eliminating the specific lower order harmonics as in SHEPWM and minimisation of THD as in OMTHD. The simulation and experimental results for a 7 level multilevel inverter were presented. The results indicate that WTHD optimization provides both elimination of lower order harmonics and minimisation of Total Harmonic Distortion when compared to conventional OMTHD and SHE PWM. Experimental prototype of a seven level hybrid cascaded multilevel inverter is implemented to verify the simulation results.


2015 ◽  
Vol 785 ◽  
pp. 122-126
Author(s):  
Wahidah Abd Halim ◽  
Nasrudin Abd Rahim

This paper presents a selective harmonic elimination (SHE) modulation technique for cascaded H-bridge (CHB) multilevel inverter. The main advantage of the proposed SHE concept is its simple implementation to eliminate the specific order harmonics. The procedures used to achieve the appropriate switching angles are presented. The switching angles are offline computed using the Newton-Raphson method. The SHE scheme of the adopted inverter uses the relationship between the angles and a sinusoidal reference waveform through some combinational logic gates. Theoretical results are verified by the experimental work of a single-phase 7-level CHB inverter employing an Altera DE2 field-programmable gate array (FPGA). Results show the inverter producing an optimum stepped output voltage when selected low-order harmonics are eliminated and the voltage total harmonic distortion (THD) is improved.


The quality of power of the cascaded H-bridge multilevel inverter is affected due to harmonics. In this paper, a Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) method including controllable DC link voltage is introduced for the multilevel inverter. Novel mathematical modeling of SHE-PWM is established concerning the DC link voltage. Compared to ordinary selective harmonic elimination, the proposed method has an increased number of degrees of freedom because of its variable DC link voltage. On the other hand, the selective harmonic elimination utilizes constant DC link voltage. In the proposed scheme, the nonlinear equations are solved only once in the entire voltage range. As a result, the computational burden will decrease. Also, the Total Harmonic Distortion (THD) of the output voltage remains constant for various values of the operating points. The simulation is performed using Matlab Simulink and the comparison is performed with the conventional PWM method. It is intended that the proposed SHE-PWM based cascaded H-bridge multilevel inverter provides better performance in terms of lower-order harmonics and less THD compares to conventional PWM method.


Author(s):  
Mohammed Rasheed ◽  
Rosli Omar ◽  
Marizan Sulaiman ◽  
Wahidah Abd Halim

<p>In this work, a three-phase of multilevel inverter (MLI) with reduced number of switches components based on Newton Raphson (NR) and Particle Swarm Optimization (PSO) techniques were presented. The Selective Harmonic Elimination Pulse-Width Modulation (SHE-PWM) is a powerful technique for harmonic minimization in multilevel inverter within allowable limits. NR and PSO techniques were used to determine the switching angles by solving the non-linear equation's analysis of the output voltage waveform of the modified CHB-MLI in order to control the fundamental component. A comparison has been made between NR and PSO techniques related to optimization in order minimize harmonic distortion. The main aims of this paper cover design, modeling, construction the modified topology of the CHB-MLI for a three phase five levels inverter. The controllers based on NR and PSO were applied to the modified multilevel inverter. The inverter offers much less THD using PSO scheme compared with the NR scheme. The performance of the proposed controllers based on NR and PSO techniques done by using MATLAB/Simulink of results are compared.</p>


2019 ◽  
Vol 9 (1) ◽  
pp. 3836-3845
Author(s):  
Y. Gopal ◽  
K. P. Panda ◽  
D. Birla ◽  
M. Lalwani

The problem of elimination of harmonics and the need of a large number of switches in multilevel inverters (MLIs) have been a hot topic of research over the last decades. In this paper, a new variant swarm optimization (SO) based selective harmonic elimination (SHE) technique is described to minimize harmonics in MLIs, which is a complex optimization problem involving non-linear transcendental equation. Optimum switching angles are calculated by the proposed algorithms considering minimum total harmonic distortion (THD) and the best results are taken for controlling the operation of MLIs. The performance of the proposed algorithm is compared with the genetic algorithm (GA). Conventional MLIs have some disadvantages such as the requirement of a large number of circuit components, complex control, and voltage balancing problems. A novel seven-level reduced switch multilevel inverter (RS MLI) is proposed in this paper to recoup the need of a large number of switches. Matlab/Simulink software is used for the simulation of two symmetrical topologies, i.e., a seven-level cascaded H-bridge multilevel inverter (CHB MLI) and a seven-level (RS MLI). Simulation results are validated by developing a prototype of both MLIs. The enhancement of the output voltage waveform confirms the effectiveness of the proposed SO SHE approach.


2021 ◽  
Vol 14 (1) ◽  
pp. 310
Author(s):  
Rashid Ahmed Khan ◽  
Shoeb Azam Farooqui ◽  
Mohammad Irfan Sarwar ◽  
Seerin Ahmad ◽  
Mohd Tariq ◽  
...  

This paper presents the Archimedes optimization algorithm to eliminate selective harmonics in a cascaded H-bridge (CHB) multilevel inverter (MLI). The foremost objective of the selective harmonic elimination (SHE) is to eliminate lower order harmonics by finding the optimal switching angle combination which minimizes the objective function containing Total Harmonic Distortion (THD) and other specific harmonic terms. Consequently, the THD is also reduced. In this study, a recently proposed metaheuristic technique named the Archimedes optimization algorithm (AOA) is used to determine the optimal angles corresponding to the 5, 7 and 9 level CHB-MLI. AOA involves equations related to a physical law, the Archimedes Principle. It is based on the idea of a buoyant force acting upward on a body or object that is partially or completely submerged in a fluid, and the upward force is related to the weight of the fluid displaced. This optimization technique has been implemented on CHB-MLI to generate various level outputs, simulated on MATLAB™ R2021a version environment software. The simulation results reveal that AOA is a high-performance optimization technique in terms of convergence speed and exploitation-exploration balance and is well-suited to the solution of the SHE problem. Furthermore, the laboratory validated the simulation result on a hardware setup using DSP-TMS320F28379D.


Author(s):  
Mohammed Rasheed ◽  
Rosli Omar ◽  
Marizan Sulaiman ◽  
Wahidah Abd Halim

<span>In this paper, modified multilevel inverter, via addition of an auxiliary bidirectional switch, based on Newton Raphson (NR) and Particle Swarm Optimization (PSO) techniques is presented. The NR and PSO techniques were employed for selective harmonics elimination (SHE) solution in a modified Cascaded H Bridge Multilevel inverter (CHB-MLI). The Selective Harmonic Elimination Pulse-Width Modulation (SHE-PWM) is a powerful technique for harmonic minimization in multilevel inverter. The NR and PSO techniques were used to determine the switching angles by solving the non-linear equations of the output voltage waveform of the modified CHB-MLI in order to control the fundamental component and eliminate some low order harmonics. The proposed NR and PSO techniques are capable to minimize the Total Harmonic Distortion (THD) of the output voltage of the modified inverter within allowable limits. This paper aims to modeling and simulation by MATLAB of the modified topology of the CHB-MLI for a single-phase prototype for 13-levels. The inverter offers less THD and greater efficiency using PSO control algorithm compared with the NR algorithm. <br https://server9.kproxy.com/servlet/redirect.srv/sruj/snbzofspy/skvyzff/p1/> The performance of the proposed controllers based on NR and PSO techniques is verified through simulation.</span>


Author(s):  
Mohammed Rasheed ◽  
Moataz M. A. Alakkad ◽  
Rosli Omar ◽  
Marizan Sulaiman ◽  
Wahidah Abd Halim

<p>In converters or multilevel inverters it is very important to ensure that the output of the<br />multilevel inverters waveforms in term of the voltage or current of the waveforms is<br />smooth and without distortion. The artificial neural network (ANN) technique to<br />obtaining proper switching angles sequences for a uniform step asymmetrical modified<br />multilevel inverter by eliminating specified higher-order harmonics while maintaining<br />the required fundamental voltage and current waveform. However, through this paper a<br />modified CHB-MLI are proposed using artificial intelligence optimization technique<br />based on modulation Selective Harmonic Elimination (SHE-PWM). A most powerful<br />modulation technique that used to minimize a harmonic contants during the outout<br />waveform of multilevel inverter is a SHE-PWM method. The proposed a five-level<br />Modified Cascaded H-Bridge Multilevel Inverter (M-CHBMI) with ANN controller to<br />improve the output voltage and current performance and achieve a lower Total<br />Harmonic Distortion (THD). The main aims of this paper cover design, modeling,<br />prediction for real-time generation of optimal switching angles in a single-phase<br />topology of modified five level CHB-MLI. due to the heavy cost of computation to<br />solving transcendental nonlinear equations with specified number, a real-time<br />application of Selective Harmonic Elimination-Pulse Width Modulation (SHE-PWM)<br />technique is limited. SHE equations known as a transcendental nonlinear equation that<br />contain trigonometric functions. The prototype of a 5-level inverter in Digital Signal<br />Processing (DSP) TMS320F2812 reveals that the proposed method is highly efficient<br />for harmonic reduction in modified multilevel inverter.</p>


Author(s):  
K Venkateswara Rao ◽  
◽  
G Joga Rao ◽  

Cascaded structured multilevel inverters are gaining lot of importance due to their simple structure and easiness in implementation. In this paper, the optimum selective harmonic elimination method is employed for a nine level inverter to suppress the selected lower order harmonic, which reduces the total harmonic distortion of the inverter considerably. The Newton rapson algorithm is employed in finding the switching angles that minimizes certain lower order harmonics. The order of the harmonics that are eliminated are third, fifth, and seventh harmonics. All the simulation results included for a nine level inverter using SIMULINK. Index Terms: Nine level MLI, Control of inverter, Modular Inverter.


Sign in / Sign up

Export Citation Format

Share Document