scholarly journals An Estimation Method of an Electrical Equivalent Circuit Considering Acoustic Radiation Efficiency for a Multiple Resonant Transducer

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2416
Author(s):  
Byung-Hwa Lee ◽  
Jeong-Min Lee ◽  
Ji-Eun Baek ◽  
Jae-Yoon Sim

The electrical equivalent model of an underwater acoustic transducer must be exactly defined in the operating frequency band to improve the driving efficiency between a sonar transmitter and a transducer. This paper used the PSO (particle swarm optimization) algorithm to estimate electrical equivalent circuit parameters of a transducer that has multiple resonant modes. The proposed method used a new fitness function to minimize the estimation error between the measured impedance of the transducer and the estimated impedance. The difference to the previous method is that the proposed method considered interference effects of the adjacent resonant modes. Additionally, this paper analyzed the effective power and separated the mechanical and acoustical resistance by considering the acoustic radiation efficiency of the transducer. As a result, the proposed method estimated all parameters at the resonance points which are influenced by the adjacent resonant modes.

2021 ◽  
Author(s):  
Rushali R. Thakkar

Modelling helps us to understand the battery behaviour that will help to improve the system performance and increase the system efficiency. Battery can be modelled to describe the V-I Characteristics, charging status and battery’s capacity. It is therefore necessary to create an exact electrical equivalent model that will help to determine the battery efficiency. There are different electrical models which will be discussed and examined along with the benefits and demerits. A systematic comparison and analysis using simulation will help us to select an ideal model which will suit best to a specific application.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1262
Author(s):  
Alessandro Mingotti ◽  
Federica Costa ◽  
Lorenzo Peretto ◽  
Roberto Tinarelli ◽  
Paolo Mazza

Stray capacitances (SCs) are a serious issue in high-voltage (HV) applications. Their presence can alter the circuit or the operation of a device, resulting in wrong or even disastrous consequences. To this purpose, in this work, we describe the modeling of SCs in HV capacitive dividers. Such modeling does not rely on finite element analysis or complicated geometries; instead, it starts from an equivalent circuit of a conventional measurement setup described by the standard IEC 61869-11. Once the equivalent model including the SCs is found, closed expressions of the SCs are derived starting from the ratio error definition. Afterwards, they are validated in a simulation environment by implementing various circuit configurations. The results demonstrate the expressions applicability and effectiveness; hence, thanks to their simplicity, they can be implemented by system operators, researchers, and manufacturers avoiding the use of complicated methods and technologies.


2021 ◽  
Vol 45 (4) ◽  
pp. 345-352
Author(s):  
Seongjong Park ◽  
Jongho Ham ◽  
Hyungsik Park ◽  
Heesung Lee ◽  
Dongyeon Lee

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mingrui Luo ◽  
En Li ◽  
Rui Guo ◽  
Jiaxin Liu ◽  
Zize Liang

Redundant manipulators are suitable for working in narrow and complex environments due to their flexibility. However, a large number of joints and long slender links make it hard to obtain the accurate end-effector pose of the redundant manipulator directly through the encoders. In this paper, a pose estimation method is proposed with the fusion of vision sensors, inertial sensors, and encoders. Firstly, according to the complementary characteristics of each measurement unit in the sensors, the original data is corrected and enhanced. Furthermore, an improved Kalman filter (KF) algorithm is adopted for data fusion by establishing the nonlinear motion prediction of the end-effector and the synchronization update model of the multirate sensors. Finally, the radial basis function (RBF) neural network is used to adaptively adjust the fusion parameters. It is verified in experiments that the proposed method achieves better performances on estimation error and update frequency than the original extended Kalman filter (EKF) and unscented Kalman filter (UKF) algorithm, especially in complex environments.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042002
Author(s):  
Yuewu Shi ◽  
Wei Wang ◽  
Zhizhen Zhu ◽  
Xin Nie

Abstract This paper presents an estimation method of double exponential pulse (DEP) between the physical parameters rise time (t r), full width at half maximum amplitude (t FWHM) and the mathematical parameters α, β. A newly fitting method based on the least infinity norm criterion is proposed to deal with the estimation problem of DEP. The calculation process and equation of parameters of this method is proposed based on an m-th-order polynomial fitting model. This estimation method is compared with the least square method by the same data and fitting function. The results show that the maximum estimation error of parameters of double exponential pulse obtained by the least infinity norm method is 1.5 %.


2014 ◽  
Vol 960-961 ◽  
pp. 1308-1311
Author(s):  
Yi Pei Huang ◽  
Ya Jun Han ◽  
Bao Fan Chen

This paper introduces the power line communications channel estimation method based on sparse Bayesian regression, it is through the use of Bayesian learning framework that provides a sparse model in the presence of noise accurate channel estimation model. Improved channel estimation using the power line for the system to consider the frequency domain equalization (FREQ) transmitter and receiver, the bit error rate and comparing the two methods for generating various channel estimation techniques, and (BER) performance curves simulation the results show that the performance of the method is better than the previous method of least squares technique.


Sign in / Sign up

Export Citation Format

Share Document